BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)))

)

))))

IN THE MATTER OF:

PROPOSED SITE SPECIFIC	
RULE FOR CITY OF SPRINGFIELD,	
ILLINOIS, OFFICE OF PUBLIC	
UTILITIES, CITY WATER, LIGHT	
AND POWER AND SPRINGFIELD	
METRO SANITARY DISTRICT	
FROM 35 ILL. ADM. CODE	
SECTION 302.208(g)	

R09-8 (Site Specific Rulemaking – Water)

NOTICE OF FILING

TO: Mr. John Therriault Assistant Clerk of the Board Illinois Pollution Control Board 100 West Randolph Street Suite 11-500 Chicago, Illinois 60601 (VIA ELECTRONIC MAIL) Marie E. Tipsord Hearing Officer Illinois Pollution Control Board James R. Thompson Center 100 West Randolph, Suite 11-500 Chicago, Illinois 60601 (VIA U. S. MAIL)

PLEASE TAKE NOTICE that I have today filed with the Office of the Clerk of the Illinois Pollution Control Board PETITIONERS' POST-HEARING DOCUMENT SUBMITTAL, a copy of which are herewith served upon you.

Respectfully submitted,

CITY OF SPRINGFIELD, ILLINOIS, OFFICE OF PUBLIC UTILITIES, CITY WATER, LIGHT AND POWER,

and

SPRINGFIELD METRO SANITARY DISTRICT,

By: <u>/s/ Christine G. Zeman</u> One of Their Attorneys

Date: November 21, 2008

Katherine D. Hodge Christine G. Zeman HODGE DWYER ZEMAN 3150 Roland Avenue Post Office Box 5776 Springfield, Illinois 62705-5776 (217) 523-4900

THIS FILING SUBMITTED ON RECYCLED PAPER

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)

)

)

)

)

)

)

IN THE MATTER OF:

PROPOSED SITE SPECIFIC RULE FOR CITY OF SPRINGFIELD, ILLINOIS, OFFICE OF PUBLIC UTILITIES, CITY WATER, LIGHT AND POWER AND SPRINGFIELD METRO SANITARY DISTRICT FROM 35 ILL. ADM. CODE SECTION 302.208(g)

R09-8 (Site Specific Rule – Water)

PETITIONERS' POST-HEARING DOCUMENT SUBMITTAL

NOW COME the Petitioners, City of Springfield, Illinois, Office of Public

Utilities, City Water, Light and Power ("CWLP") and Springfield Metro Sanitary District

("District") (collectively "Petitioners"), by and through their attorneys, HODGE

DWYER ZEMAN, and pursuant to the Illinois Pollution Control Board's ("Board")

requests for additional information during the November 3, 2008 Hearing, and consistent

with the November 6, 2008 Hearing Officer Order, provide the following:

- 1. The studies and evaluations that were referenced in the Technical Support Document ("TSD") and in the Pre-Filed Testimony of Petitioners, including:
 - Burns & McDonnell Engineering Co., <u>Phase II SO2</u> <u>Compliance Study Report</u> ("Report"), October 1998, referenced in the TSD at pages 6-1 and 6-2, regarding switching the CWLP coal supply from Illinois coal to Powder River Basin coal. <u>See especially</u>, pages IV-1 through IV-14 of the Report. The Report is attached hereto as <u>Attachment A</u>.
 - b. Burns & McDonnell Engineering Co., <u>New Generation</u> <u>Project Water Study</u> ("Water Study"), February 2005, referenced in the TSD at pages 6-5 through 6-10, regarding evaluation of boron mitigation options. The Water Study is attached hereto as <u>Attachment B</u>.

- c. Sargent and Lundy, LLC, <u>City Water Light & Power</u> <u>Dallman & Lakeside Station Water Conservation Study</u> ("Water Conservation Study"), April 2005, referenced in the TSD at page 6-5, regarding the investigation of the use of a completely dry bottom ash handling system at the CWLP Dallman Power Station. <u>See especially</u>, pages 3-4 and 3-5 of the Water Conservation Study. The Water Conservation Study is attached hereto as <u>Attachment C</u>.
- d. Burns & McDonnell Engineering Co., Letter to Douglas Brown, CWLP, regarding Boron Removal Using Electrocoagulation ("EC Letter"), May 18, 2007, referenced in the TSD at page 6-10, regarding the capital cost and annual operating costs for removal of boron in the FGDS wastewater. See especially, pages 4 through 6 of the EC Letter. The EC Letter is attached hereto as <u>Attachment D</u>.
- 2. Data summarized by Crawford, Murphy & Tilly, Inc. ("CMT") that CWLP supplied to the District to demonstrate anticipated constituents in CWLP's flue gas desulfurization system ("FGDS") wastewater stream. CMT's analysis summary of raw scrubber blowdown wastewater and of jar test results are attached hereto as <u>Attachment E</u>.
- 3. The Intergovernmental Cooperation Agreement between CWLP and the District, which is attached hereto as <u>Attachment F</u>.
- 4. A summary in table format of the boron mitigation options considered, which is attached hereto as <u>Attachment G</u>.
- 5. Coordinates for the affected stream segments, which is attached hereto as <u>Attachment H</u>.

In addition, after the November 3, 2008 Hearing, Petitioners noticed that footnote

1 of Table 6-2 on page 6-11 of the TSD cited to incorrect sections of the TSD. As

explained at hearing and in the TSD, Table 6-2 on page 6-11 of the TSD is a comparison

to one another of each alternative Burns & McDonnell addressed in its 2005 Water Study

report, not what it would ultimately cost to build or implement each option. For example,

Table 6-2 does not include disposal costs for the brine concentrator system. See, TSD

page 6-10 and Transcript of the November 3rd Hearing, pp. 50-52. A corrected version of Table 6-2 of the TSD, is attached hereto as <u>Attachment I.</u>

WHEREFORE, Petitioners, City of Springfield, Illinois, Office of Public Utilities, City Water, Light and Power and Springfield Metro Sanitary District respectfully submit this documentation and information in response to the Board's requests during the November 3, 2008 Hearing, consistent with the November 6, 2008 Hearing Officer Order.

Respectfully submitted,

CITY OF SPRINGFIELD, ILLINOIS, OFFICE OF PUBLIC UTILITIES, CITY WATER, LIGHT AND POWER,

and

SPRINGFIELD METRO SANITARY DISTRICT,

Date: November 21, 2008

By: <u>/s/ Christine G. Zeman</u> One of Their Attorneys

Katherine D. Hodge Christine G. Zeman HODGE DWYER ZEMAN 3150 Roland Avenue P.O. Box 5776 Springfield, Illinois 62705 (217) 523-4900

CWLP:002/Fil/Post-Hearing Document Submittal

CERTIFICATE OF SERVICE

I, Christine G. Zeman, the undersigned, certify that I have served the attached

PETITIONERS' POST-HEARING DOCUMENT SUBMITTAL, upon:

Mr. John Therriault Assistant Clerk of the Board Illinois Pollution Control Board James R. Thompson Center 100 West Randolph Street Suite 11-500 Chicago, Illinois 60601 Albert F. Ettinger, Esq. for Prairie Rivers Network c/o Environmental Law and Policy Center 35 East Wacker Drive Suite 1300 Chicago, Illinois 60601 aettinger@elpc.org

via electronic mail on November 21, 2008; and upon:

Joey Logan-Wilkey, Assistant Counsel Division of Legal Counsel Illinois Environmental Protection Agency 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276

Bill Richardson, Chief Legal Counsel Illinois Department of Natural Resources One Natural Resources Way 524 S. Second Street Springfield, Illinois 62702-1271 Matthew Dunn, Chief Environmental Bureau Office of the Attorney General 69 West Washington Street, 18th Floor Chicago, Illinois 60602

Marie E. Tipsord Hearing Officer Illinois Pollution Control Board James R. Thompson Center 100 West Randolph, Suite 11-500 Chicago, Illinois 60601

by depositing said documents in the United States Mail, postage prepaid, in Springfield,

Illinois on November 21, 2008.

By: <u>/s/ Christine G. Zeman</u> Christine G. Zeman

CWLP:002/Filings/ NOF-COS - Post Hearing Doc Submittal

ATTACHMENT A

Phase II SO2 Compliance Study Report

PHASE II SO2 COMPLIANCE STUDY REPORT

For

Clty Water Light & Power Springfield, Illinois

Dallman and Lakeside Stations

October, 1998

98-617-4

73°1° NOx Reduction by May 1, 03

October 7, 1998

Mr. Jay Bartlett City Water Light & Power 3100 Stevenson Drive Springfield, IL 62757

Phase II SO₂ Compliance Study Project No. 98-617-4 (G) Final Report

Dear Mr. Bartlett:

Attached are fifteen copies of the final report for the Phase II SO_2 Compliance Study in accordance with our contract for professional engineering services (City of Springfield purchase order SCSCA99202021). This study investigated and evaluated Phase II SO_2 compliance options for the Dallman and Lakeside Stations.

The report was revised to include the comments received from City Water Light & Power on the draft copy of information included in the report. Submission of this report and completion of the presentation of study results scheduled for October 8, 1998 completes our work on this project.

We appreciate this opportunity to provide professional engineering services to City Water Light & Power and would like to thank you and your staff for your assistance in providing information used in the performance of the study and preparation of the report.

Sincerely,

Gteg M. Graves . **P**.E ice/President

Brian E. Basel, P.E. Project Manager

Attachments

ENGINEERS - ARCHITECTS - CONSULTANTS 9400 Ward Parkway Kansas City, Missouri 64114-3319 Tel: 816 333-9400 Fax: 816 333-3690 http://www.burnsmcd.com

City Water Light & Power Springfield, Illinois

Phase II SO₂ Compliance Study Project No. 98-617-4

INDEX AND CERTIFICATION PAGE

REPORT INDEX

PART NO.	PART TITLE	NUMBER <u>OF PAGES</u>
PART I	Summary and Conclusions	3
PART II	Introduction	3
PART III	Compliance Options	3
PART IV	Scope of Modifications Required	17
PART V	Compliance Option Screening	10
APPENDIX A	Study Basis and Assumptions	9
APPENDIX B	K-T Analysis	4
APPENDIX C	Dallman Unit 33 SO ₂ Removal	1
APPENDIX D	Off-site PRB Coal Unloading and Storage Options	1
APPENDIX E	Cost Estimates	20

CERTIFICATION

CERT.DOC

RIC-1

TABLE OF CONTENTS

Title		Page
LIST OF TABLES		, , , , , , , , , , , , , , , , , , ,
PART I	SUMMARY AND CONCLUSIONS	[-]
PART II	INTRODUCTION	I I- 1
PART III	COMPLIANCE OPTIONS	[[].1
PART IV	SCOPE OF MODIFICATIONS REQUIRED	IV-1
PART V	COMPLIANCE OPTION SCREENING K-T decision analysis Economic analysis	V-1 V-5
APPENDIX A	STUDY BASIS AND ASSUMPTIONS	· ´
APPENDIX B	K-T ANALYSIS	`
APPENDIX C	DALLMAN UNIT 33 SO2 REMOVAL IMPROVEMENTS	
APPENDIX D	OFFSITE PRB COAL UNLOADING AND STORAGE OPTIONS	,

APPENDIX E

[

COST ESTIMATES

CWLPTC.doc TC-1

LIST OF TABLES

<u>Table</u>	Title	Page
III-1	Phase II SO ₂ Compliance Options	III-4
IV-1	Potential Unit Impacts / Modifications	IV-8
V-1	Original K-T Analysis Matrix	Appendix B
V-1a	Final K-T Analysis Matrix	Appendix B
V-2	Unit Modification Reference Sheet	Appendix B
V-3	Adjustment of K-T Analysis Scores	Appendix B
V-4	Economic Analysis Summary Phase II SO ₂ Compliance Options	V-8
V-4a	Option 1 Economic Analysis	Appendix E
V-4b	Option 2 Economic Analysis	Appendix E
V-4c	Option 3 Economic Analysis	Appendix E
V-4d	Option 4 Economic Analysis	Appendix E
V-4e	Option 5 Economic Analysis	Appendix E
V-4f	Option 6 Economic Analysis	Appendix E
V-4g	Option 7 Economic Analysis	Appendix E
V-4h	Option 8 Economic Analysis	Appendix E
V-41	Option 9 Economic Analysis	Appendix E
V-4j	Option 10 Economic Analysis	Appendix E
V-4K	Option 11 Economic Analysis	Appendix E
V-41 V 4	Option 13 Economic Analysis	Appendix E
v-4m	Option 14 Economic Analysis	Appendix E
	Dallman Unit 31 & 32 FGD System Cost Estimates	Appendix E
	Potential Unit Modification Cost Estimates	Appendix E
	Coal Handling Cost Estimates	Appendix E

TABLES.DOC

.

 $\left[\right]$

 $\left(\begin{array}{c} \\ \end{array} \right)$

 \Box

_____}

]

• 1

_}

]

LIST OF FIGURES

<u>Figure</u>	Title	Page
IV-1	Coal Handling System Diagram Dallman Two Coal Pile	IV-3
IV-2	Preliminary FGD System Flow Diagram Dallman Station Units 31 & 32	IV- 12
IV-3	FGD System Plot Plan - Dallman Units 31 & 32	IV-13
IV-4	Estimated Electrostatic Precipitator Performance - PRB Coal	IV-14

FIGURES.DOC

7

.,1

Ĵ

, L

5

-) | |

 $\left(\right)$

ţ

, Í

. }

[]

- . /

PART I SUMMARY AND CONCLUSIONS

PART I

SUMMARY AND CONCLUSIONS

Burns & McDonnell performed a study of Phase II SO₂ compliance options as requested by City Water Light & Power (CWLP) for the Dallman and Lakeside Stations.

SUMMARY

CWLP has performed several previous studies of options for compliance with the requirements of Phase II of the Clean Air Act as amended in 1990. Burns & McDonnell was contracted to provide professional engineering services to update and expand the previous compliance option studies. The following tasks were accomplished during this study:

- Compliance options developed by CWLP were reviewed and additional options were prepared and included in the study.
- Each of the compliance options was defined and agreed to by CWLP and Burns & McDonnell.
- A technical and economic screening was performed of each option.
- This report was prepared to document the activities that were accomplished during the study.
- Three meetings were held with CWLP personnel to discuss the basis for the study, to review the compliance options and cost factors to use in the cost estimates, and to perform the technical K-T decision analysis.
- A presentation of the final results of the study was made to CWLP.

CONCLUSIONS

As stated above, both a technical and an economic analysis were performed of potential compliance options. Several conclusions were made from the results of these analyses.

Technical Analysis

The technical analysis of the options identified modifications that might be required to the existing plant based on the option conditions. The modifications involve boiler and coal handling modifications that would be required for options involving a change in the coal from the Turris coal presently being burned in all of the Dallman and Lakeside units. Some of the options are based on the installation of FGD systems on Dallman Unit 31 and 32, or taking the Dallman Unit 33 scrubber out of service. The modifications and FGD system impact on several criteria were analyzed and scored during a "K-T" analysis meeting attended by both CWLP and Burns & McDonnell personnel.

The highest ranked compliance option is Option 1 based on the technical analysis performed. The scope of Option 1 includes the addition of an FGD system to Dallman Units 31 and 32. Turris coal would continue to be burned in all Dallman and Lakeside units for this option. The Dallman Unit 33 scrubber would also remain in service. Because the coal supply does not change, no unit or coal handling modifications would be required for implementation of this option.

Economic Analysis

An economic analysis similar to the analyses performed by CWLP for the previous studies was done for each of the options identified for this study. The capital and operation and maintenance cost of each modification that was might be required for each option was estimated and a total evaluated cost calculated.

Key Assumptions: The economic analysis was based on the following significant assumptions, many of which parallel those made by CWLP in its previous studies. These assumptions should be clearly understood and considered in interpretation of the reported economic analysis results:

- The positive bias in SO2 emissions due to the discrepancy between the CEMS-reported and fuelbased calculated emissions was included in determination of allowances required.
- No banking of SO₂ allowances was permitted. This includes the previous purchase of 27,000 allowances by CWLP, which are not specifically accounted for in this analysis.
- The significant reduction in the number of allowances available to the Lakeside units after the year 2009 was not specifically accounted for. The results of the evaluation are therefore most relevant for the first 10 years of Phase II.
- The analysis was based on assumed capacity factors that resulted in a total annual net generation of 2,409,000 MWh. This is somewhat higher than historical generation levels.
- The "best estimate" price of PRB coal delivered to the plant site is equivalent to \$1.45/mmBtu.
- The "eval; uated costs" used in the analysis do not represent CWLP's full power production costs.
- Even though some options evaluated would result in violation of the current Turris coal contract, no cost or penalty which may result from such violation or dissolution of that contract are included.

• Unit 33 FGD O & M costs are considered in the evaluation of each option, including the "base case".

Results: The lowest cost option based on the evaluated life cycle cost was Option 2, which is identical to Option 1 except that Monterey coal would be burned in the Lakeside units. Options 1 and 2 include the addition of an FGD system to Daliman Units 31 and 32.

Although Option 2 is the lowest evaluated cost option, it has the highest capital cost requirement of any option evaluated. This would require CWLP to take on a substantial long-term debt burden. This may make this option less attractive to CWLP, depending on the current financial condition and overall cash flow requirements of the utility.

٦

PART II

PART II

This report presents the results of the Phase II SO₂ Compliance Study conducted by Burns & McDonnell for City Water Light & Power (CWLP) of Springfield, Illinois.

BACKGROUND

Phase II refers to the second phase of sulfur dioxide emission reductions under Title IV of the Clean Air Act as amended in 1990 (The Act). The specific requirements for Phase II are provided in Section 405 of the Act. CWLP's Dallman and Lakeside generating stations are affected sources under Section 405, and all coal-fired units at the two generating stations are affected units. Section 405 requires that, beginning January 1, 2000, these units are subject to annual emission limitations for sulfur dioxide (SO₂). Under the provisions of Section 403 of the Act, each unit has been assigned an allowance of a certain number of tons of annual SO₂ emissions based on the specific emission limitations for that unit.

Beginning in calendar year 2000, the total actual SO₂ emissions (as determined by the continuous emissions monitoring systems, or CEMS) from each of the affected coal-fired units cannot exceed the emission limitation unless the owner holds allowances to cover the actual emissions. The U.S. EPA has established an allowance trading system, and holds annual auctions that help to set the price of SO₂ allowances. Several brokerage firms also track and periodically report the market value of allowances.

For any source subject to the Phase II SO₂ emission limitation requirements of The Act, there are basically three options for compliance:

- 1. Limit operation so as to insure that the total actual SO₂ emissions fall at or below the number of allowances held.
- 2. Reduce SO₂ emission rates so that the total actual SO₂ emissions fall at or below the number of allowances held. This is typically done by some combination of switching to coal with lower sulfur content or retrofitting SO₂ emission control equipment.
- 3. Procure additional allowances to cover the anticipated difference between actual emissions and the base number of allowances granted by the U.S. EPA.

Various combinations of these compliance strategies are also possible.

CWLP has previously studied the situation with regard to Phase II SO₂ compliance for the Lakeside and Dallman stations. The previous CWLP studies investigated the cost of switching to low-sulfur Illinois coal, the cost of retrofitting a flue gas desulfurization (FGD) system to Dallman Units 31 and 32, and the cost of relying completely on SO₂ allowance purchases for Phase II compliance.

Since the latest CWLP study was completed in early 1996, several factors have changed, and CWLP determined that it should update the study, including expansion of the compliance options to include consideration of switching to Powder River Basin (PRB) coal. For this reason, CWLP retained Burns & McDonnell to complete the Phase II SO₂ compliance study that is the subject of this report.

PURPOSE

The purpose of the Phase II SO₂ compliance study was to evaluate options for compliance with the SO₂ emission limitations which will become effective for the Lakeside and Dallman generating stations in the year 2000. The six options covered by the previous CWLP study in 1996 were revisited, and four additional options that had been identified by CWLP for evaluation were studied. In addition, Burns & McDonnell was to identify and evaluate up to four additional options which, in its opinion, would be feasible additions to the range of compliance optiuons previously identified. The purpose of the study was to perform technical and economic evaluation of all options, for the purpose of determining the preferred option.

Burns & McDonnell was tasked with assessing the specific modifications required for implementation of the individual options at each coal-fired generating unit at the Lakeside and Dallman generating stations. In doing so, our purpose was to identify the new and modified equipment which would be necessary to maintain safe and reliable operation of the plants. Burns & McDonnell has considerable experience with both coal switching and FGD retrofit projects for Clean Air Act compliance, and our goal was to bring this experience to bear in the assessment and evaluation of the compliance options for CWLP.

SCOPE

The scope of the study included the following tasks:

1. An initial meeting at Dallman station with CWLP staff to discuss the 10 options identified by CWLP for consideration in the study, and to clarify the scope and assumptions to be used for the study parameters.

II - 2

- 2. Identification of the four additional options to complement those identified by CWLP.
- 3. A meeting at CWLP to finalize the list of options to be evaluated in the study.
- 4. Assessment of the equipment modifications and additions required for, and the operational effects of, the implementation of each option at each unit.
- 5. Performance of a Kepner-Tregoe (K-T) decision analysis to screen and rank each option with regard to its ability to meet the needs and wants of CWLP. Burns & McDonnell facilitated this participative decision analysis process at a meeting at CWLP's Dallman station. This allowed input from CWLP's staff with regard to the technical and operational factors judged to be most important to the decision-making process.
- 6. Preparation of cost estimates for the implementation of each option at each unit. Estimates prepared included identification of expected capital costs as well as assessment of equipment performance and operating cost effects.
- 7. Development of an economic evaluation matrix, in spreadsheet format, for use in the economic analysis of the various options.
- 8. Performance of "sidebar" evaluations of possible variations in the definition of certain options. These limited-scope studies included:
 - Location of off-site storage for PRB coal.
 - Requirement for SO2 removal efficiency improvement for the Dallman Unit 33 FGD system.
- 9. Preparation of this final report.
- 10. Presentation of the results of the study at a meeting with CWLP.

. 1

-

PART III COMPLIANCE OPTIONS

PART III

COMPLIANCE OPTIONS

CWLP and Burns & McDonnell developed the compliance options evaluated in this study. Ten options were presented by CWLP as the basis for study. One of the initial tasks of this study was to review these ten options and consider revisions or additions to the base list of options. A maximum of four additional options were to be added for the study.

BASE COMPLIANCE OPTIONS

The following ten compliance options were identified by CWLP for this study. The option descriptions define the type of coal that would be burned in each unit, changes in the operation of the Dallman Unit 33 scrubber and include the addition of scrubber to Dallman Units 31 and 32.

- 1. Add scrubber to Dallman Units 31 and 32, burn 100% Turris coal in all units.
- 2. Add scrubber to Dallman Units 31 and 32, burn Turris coal in Dallman units and burn Exxon Monterrey coal in Lakeside units (6 and 7).
- 3. Burn Exxon Monterrey coal in Lakeside units, burn Turris coal in Dallman units.
- 4. Burn Exxon Monterrey coal in Dallman Units 31, 32 and Lakeside units, burn Turris coal in Dallman Unit 33.
- 5. Burn Exxon Monterrey coal in Dallman Units 31 and 32, burn Turris coal in Dallman Unit 33 and Lakeside units.
- 6. Burn 100% Turris coal in all Dallman and Lakeside units.
- 7. Burn 100% Powder River Basin (PRB) coal in Dallman units, burn Exxon Monterrey coal in Lakeside units, shutdown Dallman Unit 33 scrubber.
- 8. Burn PRB coal in Dallman Units 31 and 32, burn Turris coal in Dallman Unit 33, and burn Exxon Monterrey coal in Lakeside units.
- 9. Burn 100% PRB coal in Dallman units, burn Turris coal in Lakeside units, and shutdown Dallman Unit 33 scrubber.
- 10. Burn PRB coal in Dallman Units 31 and 32, burn Turris coal in Dallman Unit 33 and in Lakeside units.

ADDITIONAL OPTIONS

Following review of these ten options, Burns & McDonnell identified four additional options, which were

submitted to CWLP on September 2, 1998. The additional options were initially defined as follows:

- 11. Burn Exxon Monterey coal in Units 31 and 32, and in the Lakeside units, and add scrubbers to Unit 31 and 32.
- 12. No new scrubber, burn a blend of PRB and Exxon Monterey coals in Units 31 and 32, Turris coal in Unit 33 and Exxon Monterey coal in Lakeside.
- 13. No new scrubber, burn Exxon Monterey coal in Lakeside, Turris coal in Units 31 and 32, and a blend of PRB and Exxon Monterey coals in Unit 33. Unit 33 scrubber remains in service.
- 14. No new scrubber, burn Turris coal in Units 31 and 32 and in Lakeside, and burn 100% PRB coal in Unit 33. Unit 33 scrubber remains in service.

Burns & McDonnell prepared a description of the coal and FGD status, potential new coal handling equipment that could be required, Dallman Unit 33 FGD system modifications and boiler modifications for each of the ten base options and the four additional options. CWLP and Burns & McDonnell subsequently discussed the options at a meeting on September 11, 1998 at the Dallman Station. Several changes were made to the additional options, based on input received from CWLP personnel.

FINAL STUDY COMPLIANCE OPTIONS

The options agreed on by CWLP and Burns & McDonnell for further evaluation in the study are indicated on Table III-1. Option 12 is not listed as it was eliminated during the K-T analysis of the options because it was determined that blending of the PRB coal was not required, which made Option 12 the same as Option 8. Table III-1 identifies the coal burned in each of the Dallman and Lakeside units for each option.

Options 1 and 2 include the addition of a new FGD system to Dallman Units 31 and 32. Figures IV-2 and IV-3 indicate the scope of the FGD system. In addition, as requested by CWLP a new ball mill would be added to provide additional limestone grinding capacity for the new FGD systems. Options 7 and 9 would involve taking the Dallman Unit 33 scrubber out of service. Blanking plates would be installed in the ductwork to provide a permanent bypass of the scrubber.

Modifications of the units burning alternate coals would potentially be required to provide for acceptable operation. Table III-1 lists changes that might be needed to the coal feed systems, boiler air system, coal grinding and storage, the boilers and the ash handling systems.

Special coal handling features were also assumed to be required for the options involving units burning alternative coals. Based on experience gained by CWLP during a test burn of the Exxon Monterey coal performed in November 1996, the analysis includes a feed system to provide limestone to the boiler with the coal. The limestone is required to control slagging due to the high ash fusion temperatures of the Monterey coal. PRB coal was assumed to require the addition of dust collection systems and enclosure of the existing truck unloading hopper because of high potential for dusting. Because it may not be feasible to provide rail delivery of PRB coal to the Dallman plant site, off-site coal storage was evaluated. Upgrade of the existing hammermill crushers for Dallman Unit 31 and 32 may also be required to handle PRB coal.

Electronic Filing - Received, Clerk's Office, November 21, 2008 **** PC #1 **** TABLE III - 1 PHASE II SO₂ COMPLIANCE OPTIONS

Daliman and Lakeside Stations

													•
OPTIONS	1	2	3	4	5	6	7	8	9	10	11	13	14
COAL													
Lakeside 7 & 8	Turris	Monterey	Monterey	Monterey	Turris	Turris	Monterey	Monterey	Turris	Turris	Monterey	Monterey	Turris
Datiman 31 & 32	Turris	Turris	Turris	Monterey	Monterey	Turris	PRB	PRB	PRB	PRB	PRB	Turris	PRB
Dailman 33	Turris	Turris	Turris	Turris	Turris	Turris	PRB	Turris	PRB	Turris	PRB	PRB/Turris	PRB
EGD SYSTEM													
	None	None	None	None	None	None	None	None	None	None	None	None	None
				110110		110110							
Dallman 31 & 32	Add FGD System / Install 3rd bail mill	Add FGD System / Install 3rd ball mill	None	None	None	None	None	None	None	None	None	None	None
5.4				<u> </u>	0-		Off / Install permanent		Off / Install permanent	05		0.	00
Daliman 33	Un	Qn	On	Un	On	On	bypass	Un	bypass	- Oli			
			· -										
POTENTIAL UNIT MODIFICATIONS													
Lakeside 7 & 8	None	Коле	None	None	None	None	None	None	None	None	None	None	None
									Data and finder	Balan and funder	Datas anal facedar		Daise coal feador
Dallman 31 & 32	None	None	None	None	None	None	Raise coal feeder leveling bar; add split dempers, alternate (hot) PA source, modulate PA volume damper	Raise coal feeder leveling bar; add split dampers, alternate (hot) PA source, modulate PA volume damper	Raise coal feeder leveling bar; add split dampers, alternate (hot) PA source, modulate PA volume damper	Raise coal feeder leveling bar; add split dampers, alternete (hot) PA source, modulate PA volume damper	Raise coal reeder leveling bar; add split dampers, alternate (hot) PA source, modulate PA volume damper	None	Interface coal reeder leveling bar; add split dampers, alternate (hot) PA source, modulate PA volume damper
Daltman 33	None	None	None	None	None	None	Add electronic coal weigh system; raise coal feeder leveling bar; add mill Inerting end wash nozzles;add bunker inerting, add water lances and pump skid, overdilute with water when pulling ash. Scour ash handling system often with bottom ash.	None	Add electronic coal weigh system; raise coal feeder leveling bar; add mill Inerting and wash nozzles;add bunker inerting, add water lences and pump skid, overdilute with water when pulling ash. Scour ash handling system often with bottom ash.	None	Add electronic coal weigh system; raise coal feeder leveling bar; add mill inerting and wash nozzles;add bunker inerting, add water lances and pump skid, overdilute with water when pulling ash. Scour ash handling system often with bottom ash.	Add electronic coal weigh system; raise coal feeder leveling bar; add mill inerting and wash nozzles;add bunker Inerting, add water lances and pump skid, overdilute with water when pulling ash. Scour ash handling system often with bottom ash.	Add electronic coal weigh system; raise coal feeder ieveling bar; add mill inerting and wash nozzles;add bunker inerting, add water lances and pump skid, overdilute with water when pulling ash. Scour ash handling system often with bottom ash.
										-			+
CUAL HANDLING MODIFICATIONS													
Limestone feed system												4.1.1	
Lakeside 7 & 6	N/A	Add	Add	Add	<u> </u>	N/A	Add	Add	N/A	N/A	Add	Add	IN/A
Delimen 31 & 32	N/A	N/A	N/A	Add	Add	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dallman 33	N/A	N/A	N/A	N/A	<u> </u>	N/A	N/A	<u>N/A</u>	N/A	N/A	N/A	N/A	N/A
PRB coal handling package*													
Lakeside 7 & 8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Daliman 31 & 32	N/A	N/A	N/A	N/A	N/A	N/A	Add	Add	Add	Add	Add	N/A	Add
Dailman 33	N/A	N/A	N/A	N/A	N/A	N/A	Add	N/A	Add	N/A	Add	Add	Add
Two coal pile operation												N4-	
Lakeside 7 & 8	No	No	No	No	No	No	No	No	No	No	No	No	NO
Daliman 31 & 32	No	No	No	Yes	Yes	No	No	Yes	No	Yes	No	Yes	NO
Daliman 33	No	No	No	Yes	Yes	No	No	Yes	No	Yes	No	Yes	NO
Off-site Coal Storage													
Lakeside 7 & 8	No	No	No	No	No	No	No	No	No	No	No	No	No
Daliman 31 & 32	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Daliman 33	No	No	No	No	No	No	Yes	No	Yes	No	Yes	No	Yes
Hammermill													
Lakeside 7 & 8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dailman 31 & 32	No Change	No Change	No Change	No Change	No Change	No Change	Upgrade	Upgrade	Upgrade	Upgrade	Upgrade	No Change	Upgrade
Daliman 33	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Ñ/A	N/A	N/A	N/A	N/A
	*(Includes dust collection	on system for existing co	al hdig system, enclosu	re of existing truck hopp	er and misc. chute and	conveyor upgrades)							

[,

 $\left[\right]$

PART IV SCOPE OF MODIFICATIONS

PART IV SCOPE OF MODIFICATIONS REQUIRED

Burns & McDonnell reviewed the existing systems and equipment at the Lakeside and Dallman generating stations to determine the modifications required for the implementation of each Phase II SO₂ compliance option. Burns & McDonnell engineers who specialize in the respective disciplines of coal handling, coal combustion and air pollution control provided input to this review and assessment. Data gathered and observations made during visits to the plant site were considered. Discussions with CWLP personnel provided additional insight into the feasibility of the required modifications and their effects on operation of the coal handling system, boilers, electrostatic precipitators and FGD system.

The following sections provide a discussion of the important factors considered by each discipline in the assessment of the modifications required. The basis for the estimates of the costs of the modifications for each option is described. Where the modifications would result in equipment performance degradation or increased operation and maintenance costs, the basis for the estimation of those costs is stated.

COAL HANDLING AND STORAGE

The coal switch options under consideration as part of the Phase II SO₂ compliance planning for the Lakeside and Dallman stations include:

- Switching from Turris coal to medium sulfur Illinois coal (from the Exxon Monterey mine) for the cyclone boilers at Lakeside and Dallman; and
- Switching to low sulfur Wyoming Powder River Basin (PRB) coal in units 1, 2 and/or 3 at the Dallman station.

Because CWLP has conducted a test burn of Monterey coal in one unit each at Lakeside and Dallman, and because of the physical similarity between the Turris and Monterey coals, the modifications required to switch to Monterey coal are well established, and minimal in extent.

Consequently, the majority of the assessment effort was directed at the modifications required to receive, store, transport, unload, convey and crush the PRB coal for use at Dallman station. A switch to PRB coal was not considered by CWLP for Lakeside due to the impending retirement of the units in 2011.

Handling PRB Coals – General Considerations

There are three major impacts on coal handling operations when dealing with Power River Basin (PRB) coals:

- Spontaneous combustion
- Fugitive dusting
- Higher burn rates

Spontaneous combustion can occur with most coals. The problem can be significant with PRB coal. Many utilities find they must either burn PRB coal or compact it in long term storage within 14 to 21 days of receipt, to minimize the risk of spontaneous combustion depending on the weather conditions. Putting PRB coal into storage requires good stockpiling techniques. The coal should be spread into thin layers and compacted. Rubber tire dozers with additional ballast can be used to provide the required compaction pressures. The cost of a rubber tired dozer was not included in the cost estimates for this study because of the high cost and because it would not be needed often. Building the pile could be performed using rented equipment or by subcontracting this work.

A common characteristic of PRB coals is the large amount of fugitive dust created when it is handled. The coal particles continually break down with loss of moisture and handling. Most PRB coal handling systems use several types of both active and passive dust control. Dust that isn't controlled is typically cleaned up with water wash down and vacuum systems.

Because PRB coals have a lower BTU value than the Turris coal currently used at Dallman, additional coal must be burned to provide the same heat input to the boilers. At CWLP, it is estimated that approximately 25 percent more PRB coal would be burned in the boilers (assuming the same unit ratings). This translates into longer operating hours for the coal handling system.

Receiving PRB Coal

Three alternatives were considered for receiving rail shipments of PRB coal from Wyoming. Technical aspects of these alternatives are discussed below. Additional information regarding the estimated scope and cost of development of the three alternatives is presented in Appendix D.

Railcar Unloading at Dallman: CWLP currently does not have any reliable way to receive rail delivered coal at the Dallman and Lakeside power plants. The Lakeside track hopper is abandoned and the

Dallman hopper no longer has rail sidings connected to it. The plant site is not large enough for any type of true unit train coal deliveries.

With major modifications to the existing rail sidings, limited rail unloading could be restored at Dallman for delivery of PRB coals. The location of the existing Dallman track/truck hopper on the east side of the plant would only allow short strings of railcars to be unloaded. Unloading railcars on the existing hopper would interfere with truck unloading activities used by some of the other options (where some Turris coal is still burned at Dallman). For this reason, the cost estimates for this study were based on a new track hopper and storage sidings on the west side of Dallman. See Figure IV-1 for a diagram of this arrangement.

Under the PRB rail delivery to Dallman alternative, PRB "unit trains" would be delivered to a Springfield railyard and then broken up for delivery to Dallman. It should be possible to handle strings of 10-20 cars for delivery at Dallman. The new track hopper would have a stockout conveyor that would build a new pile in the western part of the Dallman coal yard.

Off-Site Rail Delivery: Two alternatives to on-site rail delivery were identified by CWLP for consideration during this study. The first alternative would use the existing bottom dump unloading system operated by Pawnee Transportation, near Pawnee, Illinois. This unloading system currently receives and unloads trains for Dominion Energy's Kincaid station. The system can unload rapid-discharge hopper cars at a rate of 1200 TPH. They generally take all day to unload a unit train. No coal thaw facilities are currently installed. Only limited area is now available for on-site (Pawnee) coal storage.

A second alternative would be for CWLP to develop a new rail unloading/truck loadout facility. A tentative site, Curran, was identified southwest of Springfield. The Curran site was visited by Burns & McDonnell and CWLP and appears to be an industrial park with rail sidings. Additional property may be available nearby that is currently in agricultural use. A new facility could be designed to unload either rotary dump or rapid discharge rail cars. An unloading rate of more than 3500 TPH should allow unloading times less than four hours, which should qualify for lower freight rates. The additional undeveloped area near the site may be large enough for storage for up to 60 days worth of PRB coal. The cost estimates for this study were based on installing a rotary rail car dump unloader at the site.

60-Day PRB Coal Storage

Due to the uncertainty of PRB coal deliveries, CWL&P directed that this study include storage of a 60-day supply of coal for the options using PRB coal. This reserve supply could be stored on-site or at either of the two off-site coal receiving terminals (Pawnee Transportation or Curran). Under the maximum PRB burn rate options (Nos. 7,9,11 & 14), approximately 238,000 tons would need to be in long term storage. Costs for this long-term coal storage are presented in Part V and in Appendix D.

The Pawnee Transportation unloading site does not appear to include land for long term storage of coal. If additional land is available, it would have to be developed for PRB coal storage. This would include a prepared pile base, coal pile runoff with treatment facility and possibly a pile watering system for fugitive dust control.

The proposed Curran site would require all the same features listed above for the Pawnee Transportation site in addition to a railcar unloader and rail. It is anticipated that the 60 days pile and its runoff pond could be developed inside the proposed rail loop.

For storage at the Dallman plant site, part of the 60-day supply at maximum burn rate could be stored in the existing coal yard. It is estimated that approximately 150,000 to 175,000 tons could be stored in the existing Dallman coal yard located south of the plant. A potential location for additional storage could be developed across the plant's discharge canal. This area would need to be cleared and developed similar to the other offsite storage areas. The PRB coal would be reclaimed by a wheel loader into trucks for delivery to Dallman as required. A conveyor reclaim system could be considered in the future.

Hammer Mill Upgrades

It is generally recommended that cyclone boilers using PRB fuels use a 97.5% passing 4-mesh coal size. This is usually a finer grind than is used with bituminous coals. The existing Pennsylvania Crusher reversible hammer mills can be adjusted for the finer grind, however there are usually higher horsepower requirements (horsepower per ton per hour) to obtain this operation. The finer grind requirements will shorten hammer and cage life. Pennsylvania Crusher has developed a "fine grind kit" for retrofitting older hammer mills crushing PRB coals. The new cage system is designed to prolong cage/screen bar life when making the finer grinds. Grinding PRB coal may limit the crusher capacity when fine grinding. Typical grinds with bituminous coals use approximately 1½ to 2 horsepower per ton per hour. When fine grinding PRB coals, this will climb to the 3-4 horsepower per ton per hour range. In some cases, the original hammer mill design (generally shaft size) may allow the use of a larger motor. In other cases, a complete hammer mill and motor replacement is required.

The existing hammer mills have 500 HP motors and are rated at 225 TPH, which is very close to the 2 horsepower per ton per hour "rule." It is possible that the switch to a finer grind of PRB coal will reduce the hammer mill capacity. To offset this, the feed rate to the mill could be reduced to obtain the higher horsepower per ton ratios needed. This would increase the time required to fill the bunkers. If maintaining the current throughput is desired, the spare mill could be operated to maintain capacity while achieving the finer grind. The only upgrade included in the cost estimates for this study was the addition of a fine grind kit for each crusher.

Dust Collection

Burns & McDonnell recommends dust collection systems be installed as part of any new coal handling system. Dust collection is even more important when dealing with PRB coals, due to their tendency to break down faster than most other coals. This study includes the cost of dust collection addition for the options burning PRB coal.

Two of the most critical areas at Dallman are the crusher house and the tripper bay. The crusher house does not have any active dust collection and it is understood has been a continuous source of fugitive emissions. The tripper bay does have existing dust collection systems but they are frequently out of service. The indoor location of the existing collectors is no longer desirable due to the problem of a deflagration release inside the powerhouse structures.

Enclosure Of Truck Dumping Operations

The existing truck dumping operations at both Lakeside and Dallman are done in the open. There are no buildings around these areas. At Dallman, trucks can dump in the truck hopper for stockout on Conveyor E or directly onto the storage pile. At Lakeside, trucks dump directly onto the storage area.

The Turris coal is partially washed and is not a large dust problem when first received. Should PRB coals be received, this could change substantially due to the generally higher silt content found in PRB coals. An enclosure probably would be required to maintain current fugitive dust emission levels, and was included in

the study cost estimates. Dust collection and/or wet suppression is often used to further reduce unloading emissions.

Coal Handling Washdown and Vacuum Systems

Any dust inside the coal handling system that the active dust control systems do not capture will eventually have to be cleaned up. Most coal handling systems are equipped with at least a partial water wash down system.

A typical system will have a header pipe along the conveyor with hose stations at approximately 100 feet intervals. Hoses are usually 1½ inch diameter, though some plants use fire hoses. "Start at the top, wash to the bottom" is the usual procedure. Water systems all have one big drawback in northern climates - freezing. For this reason, many PRB coal users also install a vacuum system along the conveyors and inside buildings.

One vacuum system that works well for many users is a rigid vacuum pipe in conveyors and buildings with vacuum hose stations at 50-100ft intervals and on each floor in buildings. Rather than use dedicated vacuum producers at each building, many utilities use a truck or trailer mounted vacuum producer. This can be driven or towed to the required building or conveyor. The vacuum systems are not as neat or as easy to use as water wash down, but they solve the freezing problems in the winter.

Limestone Addition for Monterey Coal

Previous CWLP test burns with the low sulfur Monterey coal demonstrated the need for the addition of $1\frac{1}{2}$ by weight of limestone to blend in the coal for use in any of the cyclone boilers (Lakeside and Dallman 31/32). A storage silo and feed system would be needed for this purpose. At Lakeside, this would be done by relocating the existing unused sorbent silo to a location near the coal conveyors. A new weigh feeder would meter the already crushed limestone onto the coal belts prior to the crushing. This would allow for some blending of the limestone into the coal prior to bunkering. Limestone would be delivered by bulk tanker and unloaded pneumatically directly into the limestone silo.

Handling Two Coals at Dallman

Many of the SO₂ compliance options involving fuel switching (4,5,8,10, & 13) would use two types of coal for fueling the Dallman Station. Any of these options will present a number of challenges to the existing coal handling system including:

- There is only one unloading hopper and stockout conveyor, the E-belt.
- The two main reclaim hoppers are located under the main stock pile
- The only "remote" reclaim hopper ("D") is on the extreme east end of the coal yard and has only limited stockpile capacity over and around it.
- The existing coal yard is long and narrow. Its growth is limited by the Springfield Lake and the plant structure.

The first requirement for a two-coal receiving scenario would be to build a second truck dump hopper and a new stockout conveyor. The second unloading/stockout system could be built in the southwest corner of the coal yard. Coal trucks could be routed around the west side of Dallman to reduce traffic on the east side. Having two separate unloading and stockout locations would allow simultaneous delivery of two types of coal.

Reclaim from the second stockpile has a number of alternatives. The least expensive approach, based on capital required, would be to doze coal from the second pile to the "D" reclaim hopper. This would be a long distance for everyday dozing. A coal scraper or a Raygo carry dozer may be more practical than a conventional dozer with a coal blade.

A more automated system would add a reclaim hopper and conveyor to transport the coal back to the "D" reclaim hopper. Both above ground and below ground conveying systems could be used to tie into the existing 1A/B or D conveyors. The reclaim hoppers could be arranged similar to the existing layout with both under pile and outside of pile hoppers. The reclaimed coal could be discharged onto a small radial stacker that would discharge into the "D" reclaim hopper. The radial stacker could be swung out of the way when not in use. This system was included in the cost estimates for this study. Figure IV-1 provides a diagram showing the equipment which would be required to implement the scheme for handling two coals at the Dallman station.

COMBUSTION SYSTEMS AND EQUIPMENT

For purposes of this study, the combustion systems and equipment at the Lakeside and Dallman stations were reviewed to determine the extent of modifications required to accommodate the coal switches being considered as options for Phase II SO₂ compliance. A total of 13 areas of concern were identified for evaluation of the adequacy of the existing equipment and systems. In each area, the existing equipment capacities were reviewed. Calculations were performed to determine the relative need for equipment upgrades or replacement.

The results of this assessment are displayed in Table IV-1. The table shows the determination of modifications required, if any, for each boiler under the condition dictated by each of the 14 compliance options described in Part III. Note that because there is no coal switch for any unit under Options 1 and 6, there will be no need to make any modifications. Similarly, some options involve coal switches for two or more of the five boilers, but no change in the coal burned for the remaining boilers.

The following sections describe the considerations involved in the assessment of equipment adequacy and the need for modifications in each of the areas of concern shown on the tabulation. They are presented in the same order as displayed on Table IV-1.

Forced Draft Fans

FD Fan capacity is primarily determined by the quantity of heat release, or carbon burned. Switching to a coal with a higher or lower heating value (HHV) will change the coal flow as required to maintain a constant carbon input, but will not—in itself—change air flow. Air flow is matched to carbon input. However, switching to a coal with a higher moisture content will deteriorate boiler efficiency, requiring additional carbon input (fuel flow) and a proportional increase in air flow. The only fuel in this study which would affect the FD Fan capacity is the switch to PRB coal. The increased moisture introduced into the furnace by the switch to PRB coal.will deteriorate boiler efficiency approximately one percent and thus increase FD Fan capacity requirement by approximately this same amount. Thus, no change in FD Fan capacity or head is required. The degradation in unit heat rate due to the increased moisture content of the coal is addressed in the economic analysis presented in Part V.

Electronic Filing - Received, Clerk's Office, November 21, 2008

TABLE IV-1 POTENTIAL UNIT IMPACTS / MODIFICATIONS Daliman and Lakeside Stations

\neg	Concern	General Description of Concern		Optione 1 & G	ì		Options 2, 3 &	4		Option \$			Options 7 & 1	1		Option \$			Options 9 & 1	4	i	Option 10	_	Option 12		Option \$:3
			Lakeside 7/8	Daliman 31/3	Dallman 33	Lakeside 7/6	Daliman 31/32	Dalíman 33	Lakeside 7/8	Deliman 31/32	Daliman 33	Lakeside 7/4	Dallman 31/32	Dallman 33	Lukeside 7/6	Delimen 31/32	Daliman 33	Lakesida 7/6	Daliman 31/32	Daliman 33	Lakeside 7/8	Oaliman 31/32	Daliman 33	Eliminated	Lakesida 7/\$	Dallman 31/32) Dallman 33
_												•									· · · · · · · · · · · · · · · · · · ·						
1	FD Fan Capacity or Head	fincrease in moisture decreases boiler officiency, increasing both fuel and air requirement. Moisture also increases flue gas volume.	No Change	No Change	No Change	No Change	No Change	No Changa	No Change	No Change	No Chânge	No Change	No Change (1% onp. Incr.)	No Change (1% cap. Incr.)	No Change	No Change (1% cap. Incr.)	No Change	No Change	No Change (1% cep. Incr.)	No Change (1% cap. incr.)	No Change	No Change (1% cap. Inor.)	No Cheagé		No Change	No Change	No Shange (1% cap. Incr.)
2	ID Fan Capecity or Head (Unit 33 only)	Same as FD Fan, plus an additional concern about increasing flue gas lemperature with PRE if furnace is not adequately cleaned.	p/a	0/4	No Chânge	r;/@	n/a	No Change	1/4	n/e	No Change	n/e	n/m	No Change (2% cap. Incr.)	n/a	n/a	No Change	n/a	n/a	No Change (2% cap, incr.)	n/e	n/a	No Change		n/s	n/a	No Change (2% cap. Incr.)
3	Coal Feeder Capacity	Any reduction in HHV and/or bolter efficiency will require an increase in coal feed rate.	No Chengë	No Change	No Change	No Change	No Change	No Change	No Change	No Change	No Change	No Change	Reise leveling ber,	Add electronic weigh system & reise leveling bar.	No Chenge	Reise leveling bar.	No Chunge	No Change	Raise lèveling ber.	Add electronic weigh system & raise laveling bar.	No Change	Raise leveling bar.	No Chinge		No Change	No Change	Add miestronic weigh system & raise leveling bar.
4	Coal Mill Cepecity (Unit 33 only)	Same basis as Coel feeder.	n/a	ŋ/a	No Change	e'n	n/a	No Change	n/a	n/a	No Change	e\ŋ	n/∎	No Change (4 mills for MCR)	n/a	n/a	No Change	n/∎	n∕∎	No Change (4 mills for MCR)	n/m	r/a	No Change		n/e	n/a	No Change (3 mills for MCR)
5	Exhauster Capacity or Head (Unit 33 only)	Same basis as coal Coal Feeder. In eddition, PRB coal requires higher PA/Fuel ratio, increasing both capacity and head requirements.	n/a	n/a	No Change	n/a	rv/n	No Change	n/a	n/s	No Change	ณ/ต	n/a	Upgrade exhausters (4 mills for MCR) (Max. head increase of 24%.)	n/a	G/a	No Change	n/a	n/a	Upgrade exheusters (4 mills for MCR) (Max. hand increase of 24%.)	∩/€	n/a	No Chènge		n/a	n/∎	Upgrade subausters (3 mills for MCR) (Max. head increase of 24%.)
•	Coal Pipe Siza (Unif 33 only)	The increase in PA flow (See Exhaus- ters) increases coal pipe velocity. Normally try for a maximum of 5000/pm.	i a/a	n/a	No Change	n/a	e'n	No Chenge	n/a	n/a	No Change	n/a	Ri a	No Change (Velocity increases to 5560 (pm.)	n/a	n/a	No Change	n/6	n/a	No Change (Velocity increases to 5560 (pm.)	n/a	0/0	No Chenge		n/n	n/a	No Change (Velocity increases to 5560 fpm.)
7	Nill (nerling (Unit 33 only)	PRB coal requires mill (nerting,	e/n	n/a	No Change	n/a 🗌	e/n	No Change	n/a	n/s.	No Change	nia	n/a	Add mill inerting.	n/a	n/a	No Change	n/e	n/a	Add mill inerting.	n/a	n/a	No Change		n/a	n/a	Add mill inerting.
6	Mill Wash Nozzles (Unit 33 only)	PRB coal requires mit washing on shutdown.	n/a	n/e	No Change	n/a	n/L	No Change	e/n	n/a	No Change	n/a	n/a	Add mill wash nozzies.	n/a	n/a	No Change	n/e	n/a	Add mill weeh nozgies,	n/a	n/a	No Change		n/e	n/a	Add mill wash nozeles.
	Cyclone Modifications (Units 31/32 only)	PRO cosi in a cyclone requires certain cyclone modifications for successful firing.	a\n	No Change	n/a	C/11	No Change	n/a	n/n	No Change	n/a	0/6	Add spilt dampers, alternate (hoi) PA source, & modulate PA volume damper.	n/a	, n/a	Add split dampers, attemate (hol) PA source, & modulate PA volume damper.	nie	n/a	Add spill dampers, atternate (hol) PA source, & modulate PA volume damper.	n/a	n/#	Add split dampers, alternate (hol) PA source, & modulate PA volume demper.	n/a		n/s	No Cherige	n/a
10	(Units 7/8 4 31/32 only)	Monterpy coal requires the addition of limestone us a fluxing egant in 31/32,	No Change	No Change	n/a	Add limestone feed,	No Change . (LS (red - Op 4))	n/ a	No Change	Add limesione fead.	n/∎	Add limestone feed.	No Change	n/a	Add limestone (eed.	No Change	rt/a	No Change	No Change	n/9	No Chenge	No Change	n/a		Add fimestone feed.	No Change	r∕∙
"	Bunker Inerling	PRB coal requires bunker inerting.	n/n	No Change	No Chenge	n/a	No Change	No Change	n/e	No Change	No Change	n/s	Add bunker inerting,	Add bunker inerting.	n/a	Add bunker inerling.	No Change	n/a	Add bunker inerling.	Add bunker inerting.	n/a	Add bunker inerting.	No Change		n/s	No Change	Add bunker inerting.
12	Furnitice Cleaning	PRB coel requires waterlances to clean fumace waterwells.	N ² I	No Change	No Change	n/a	No Change	No Change	n/a	No Change.	No Change	n/s	Add weierlances & pump skid.	Add waterlances & a pump skkl.	n/a	Add welenances & pump skid.	No Change	n/a	Add wateriances & pump skid.	Add waterlances & pump skid.	n/a	Add wateriances & pump skid.	No Changa		n/a	No Change	Add weterlences & pump skid
13	Ash Handling System	PRB così ash solidiñes when moistened. Wel conveying systems require special Irealment.	n/a	No Change	Na Change	n/e	No Change	No Change	n/a	No Change,	No Change	n/a	Overdiute with water when pulking esh. Scour with bottom ash often,	Overdilute with water when pulling asb. Scour with boltom ash often.	n/a	Overdilute with water when pulling esh. Scour with bottorn ash often.	No Change	n/a	Overdikite with water when pulling ash. Scour with bottom ash often.	Overdifule with water when pulling esh. Scour with bottom esh often.	n/a	Overdifule with water when pulling ash. Scour with bottom ash often.	No Chenge		n/s	No Change	Overdilute with water when pulling ash. Scour with bottom ash often.

.
Induced Draft Fan Capacity or Head (Unit 33 only)

The ID Fan capacity is influenced by the same parameters discussed above for FD Fan capacity. In addition, the increase in fuel moisture mentioned above will result in an increase in flue gas volume because of the additional moisture. For PRB coal this increase is estimated to require a two percent increase in capacity. This should not require any modification to the existing fans.

Coal Feeder Capacity

All five units use coal feeders manufactured by the Stock Equipment Company. The Monterey coal is similar to the Turris coal, and thus will not require a change in feeder capacity. However, the PRB coal heating value is quite low (8,375 Btu/lb compared to 10,500Btu/lb for Turris coal), requiring a significant increase in coal mass feed rate. The coal feeders for Units 31 and 32 have already been converted to employ an electronic weigh system. With the electronic weigh system, the leveling bar can simply be raised to increase the capacity of the coal feeder. On unit 33, however, the feeder control system has not been upgraded. Thus, to accommodate PRB coal a modification will be required to increase the leveling bar position. Conversion to the electronic weigh system for all four feeders has also been assumed.

Bowl Mill Capacity

The boiler for Unit 33 utilizes pulverized coal combustion. Coal pulverization is achieved with four bowltype pulverizers. Currently, on Turris coal, one mill is available as a spare, even at full load operation. The effective mill capacity is affected by the coal grindability, moisture, and feed size. The combination of these factors indicate that the mill capacity is entirely adequate for all coals except PRB coal. For PRB coal, calculations indicate that all four mills must be operated to attain the firing rates necessary for full load operation. This mode of operation will decrease the reliability of the combustion system for Unit 33. Consequently, Burns & McDonnell identified Option 13, which allows blending of PRB coal and Turris coal as required to maintain full load on only three mills.

Exhauster Capacity and Head

Conversion to PRB coal would significantly affect the requirement for the exhausters which serve each bowl mill. The exhauster capacity requirements for Unit 33 are affected by the change in required coal flow, the change in primary air to fuel ratio, and the change in mill exit temperature. Head is affected by the resultant change in coal pipe velocity. At maximum mill coal capacity the expected increase in air-tofuel ratio, accounting for the expected decrease in mill exit temperature, is calculated to result in a change in coal pipe velocity from 5,000 feet per minute to 5,560 feet per minute. This corresponds to a 24 percent increase in head requirements. For purposes of this study, Burns & McDonnell has assumed that the capacity of the four existing exhausters can be upgraded via mechanical modifications to provide the additional flow and head. Any additional capacity increase requirement will necessitate placing an additional mill and exhauster in service. If CWLP proceeds with a PRB coal conversion for Unit 33, a test burn of PRB coal would be recommended to confirm the adequacy of this assumption.

Coal Pipe Size

The Unit 33 pulverized coal pipes are 18 inches outside diameter, and adequately large to convey the PRB coal to the furnace. The coal pipe velocity, assuming an initial design maximum velocity of 5,000 feet per minute, is estimated to increase to 5,560 feet per minute. This should be within acceptable operating limits.

Mill Inerting and Mill Wash

Experience has shown that inerting systems should be added to coal pulverizers in association with conversion to PRB coal, for consideration of prevention of fire and explosion. Mill inerting and mill wash nozzles both are assumed to be required for each option involving use of PRB coal in Unit 33.

Cyclone Modifications

Firing PRB coal in a cyclone-fired furnace requires special precautions and techniques. The cyclone modifications for Units 31 and 32 include the addition of split dampers, the ducting of primary air to a hotter source, and remote modulation of the PA volume damper. The split damper restricts secondary air flow at the burner end of the cyclone in an attempt to retain the coal and slag in the system as long as possible. The hotter primary air will help to prevent cooling of the fire at the burner end of the cyclone. Modulation of the primary air dampers helps maintain the proper secondary to primary air ratio at all cyclone loads.

Cyclone Slag Fluxing Agent

Previous tests by CWLP have indicated that limestone fluxing agent is required to burn Monterey coal in Units 31 and 32. The costs of this modification are included under the coal handling system evaluation.

Bunker Inerting

One of the characteristics of PRB coal is its tendency to spontaneously combust, and the most likely place for this to happen is in the coal storage bunkers. A CO_2 inerting system can be retrofit to each bunker to quench a fire if one should arise.

Furnace Cleaning

PRB coal contains an unusually high percentage of calcium, magnesium, and sodium in the ash. These minerals deposit on the furnace water walls in a white film, and reflect a large portion of the radiant heat energy. Normal air or steam sootblowers are not effective at removing this reflective coating. Water lances, however, are effective in removing these deposits. For Unit 33 Burns & McDonnell estimates the requirement for an addition of 10 water lances and one pump skid. For Units 31 and 32, five water lances and one pump skid have been included in the modifications required.

Ash Handling System Operation

The alkaline chemical constituents of PRB coal ash make it susceptible to formation of cementitious deposits in wet ash handling systems. In some cases PRB coal conversions have required the conversion to dry ash handling. However, with the configuration of the existing ash sluice system at Dallman, it should be possible to avoid problems by proper operation and sequencing of the system. Use of increased water to ash ratios in the sluice system will minimize the chance for hard deposits to form in the pipelines. Periodic cycling of the system to sluice 100 percent bottom ash will provide a scouring action on the pipe which should also prevent the buildup of scale in the lines. No physical modifications to the system will be required to accomplish this operational sequencing. Therefore, no costs have been assigned to the ash system as part of the cost estimates for the PRB coal switching options.

AIR POLLUTION CONTROL EQUIPMENT

The Phase II SO₂ compliance options identified for this study, as described in Part III, include several which include the retrofit of flue gas desulfurization (FGD) systems to Dallman Units 31 and 32. In addition, options 7 and 9 are based on shutting off the existing FGD system for Unit 33 in conjunction with a switch to PRB coal. Finally, all the options that include coal switching to PRB coal have the potential to adversely affect the performance of the existing electrostatic precipitators (ESPs). To assess the modifications required for each of these options, Burns & McDonnell reviewed available information on the

existing FGD system and ESPs, and consulted with CWLP personnel. The results of that assessment are described below for each topic.

Retrofit FGD Systems for Units 31 & 32

In order to take advantage of the existence of the FGD system on Unit 33, the FGD process for application to Units 31 and 32 would be the same, namely the wet limestone process with forced oxidation to produce a gypsum byproduct. The use of an identical process allows the sharing of some common equipment and systems. In the case of the vacuum filters, the systems installed for Unit 33 have sufficient capacity to allow for the additional requirements of the FGD systems for Units 31 and 32 without modification. For limestone grinding, the existing Unit 33 systems will require upgrading to increase capacity so that the combined needs of the scrubbing systems for the three boilers can be met without compromising system reliability. The addition of a third wet grinding mill equal in capacity to the existing Unit 33 mills has been assumed as the basis for the study.

Figure IV-2 shows the conceptual flow diagram for the retrofit FGD systems, and indicates the interfaces with the existing systems for Unit 33. Based on preferences as dictated by CWLP for this study, each boiler will be provided with a separate SO_2 absorber. A possible arrangement of the absorbers and auxiliary equipment is shown on Figure IV-3. The retrofit FGD systems are assumed to utilize the existing chimney liners. Costs for alloy "wallpapering" of the liners have been included in the cost estimate. Details of the cost estimate, indicating the scope assumed for the FGD retrofit, are tabulated in Appendix E.

Shutting Off the Unit 33 FGD System

Options 7 and 9 are based on the assumption that the Unit 33 FGD system can be shut off if the boiler is switched to burn 100 percent PRB coal. With regard to this, it is assumed that blanking plates will be installed in the ductwork to isolate the FGD system flow path from the main flue gas flow path. It is assumed that the FGD system would be "abandoned in place". No cost for demolition of the FGD absorbers or related equipment is included.

A consequence of shutting off the FGD system is that the current location of the opacity monitors would no longer be workable. It is assumed that the scope of Options 7 and 9 include relocation of the opacity monitor to the stack.

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * PC #1 * * * *

Figure IV-3-FGD System Plot Plan Dallman Units 31 & 32

Impact of Fuel Switching on Precipitator Performance

A graphical approach was used to estimate the performance of the Dallman unit's electrostatic precipitators while the boilers are firing PRB coal. This approach used the data generated by two computer programs as input. The first program was run to estimate the ash resistivity of the PRB coal fly ash. This program (RESIST) uses the elemental composition of the ash, the ultimate fuel analysis and data describing the operating conditions at the precipitator inlet to calculate three resistivity factors. The combination of these resistivity factors yields the bulk resistivity of the ash. A value of 1×10^{11} Ohm-cm was selected as a representative resistivity value for these fuels. A second program, developed for the United States Environmental Protection Agency (USEPA) and known as ESPMV3, was used to generate a series of curves showing the relationship of removal efficiency to Specific Collection Area (SCA) and ash resistivity.

The performance of the precipitators was estimated by superimposing the design SCA values to a point on the SCA/Resistivity plot. Refer to Figure IV-4. This point is located where the estimated ash resistivity line $(1x10^{11} \text{ Ohm-cm})$ intersects the line rising vertically from the X-axis representing the design SCA. The removal efficiency is read from the Y-axis. The results of the analysis showed that both units (SCA approximately 290) in good condition could be expected to have a removal efficiency of approximately 99% on ash with a bulk ash resistivity of $1x10^{11} \text{ Ohm-cm}$. A removal percentage of near 99% will be required to maintain particulate emissions below 0.1 lb/MBtu as required by the emission limits applied to these units. It should be noted that the design SCA should be considered as marginal for opacity and particulate emissions compliance on PRB coal. Factors such as increased gas flow, elevated precipitator inlet temperature, ash particle size and fly ash / bottom ash split have significant influence on precipitator performance. If conversion to PRB coal is to proceed, it is strongly recommended that an extended test burn be performed to confirm the suitability of these precipitators under the 100% PRB firing operating conditions. In order to achieve continuous compliance under all operating conditions, it may be necessary to add flue gas conditioning to each unit.

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

PART V COMPLIANCE OPTION SCREENING

PART V COMPLIANCE OPTION SCREENING

Following identification and agreement on the compliance options for this study, Burns & McDonnell performed a screening of each option to determine the relative suitability of each option to meet CWLP's Phase II compliance requirements. CWLP's previous Phase II compliance studies identified the technical advantages and disadvantages of particular options and estimated the compliance costs for each option and for each unit. As described in Part II, costs were estimated for each of the compliance options. In addition, a benefit / risk evaluation of each option was done and a Kepner-Tregoe (K-T) analysis was performed to determine the preferred option according to CWLP's assessment of each options relative fulfillment of identified significant criteria.

K-T DECISION ANALYSIS

A K-T analysis of the Phase II SO2 compliance options was used to compare the ability of each option to meet CWLP's required and desired technical objectives. From a technical standpoint, the K-T analysis provides a systematic approach to decision making and problem analysis. The relative costs of the options were not considered when the K-T analysis was performed.

Burns & McDonnell prepared a suggested list of technical criteria for the K-T analysis. These criteria were discussed with CWLP and the K-T analysis performed during a meeting at the Dallman Station on September 22, 1998.

"Musts" Criteria

Technical objectives for the compliance options were defined either as "Musts" or as "Wants". The "Must" criteria were those aspects the option has to meet to be considered viable. If an option didn't meet all of the "Must" criteria were established during the study, it was eliminated from further consideration.

Based on input received from CWLP, Burns & McDonnell included the following "Must" criteria on the K-T chart used to perform the analysis: "Maintain space for NO_x controls to be added at a later date". CWLP believes that some type of NO_x controls may have to be added to the units because of future regulatory mandate and desires to maintain the flexibility to be able to do this with minimal impact to the existing plant. Additional criteria discussed, but not included in the analysis were the requirement for the

option to meet the terms of the existing Turris coal contract, meeting the SO₂ allowance cap for the plant and providing and maintaining safe operating conditions at the plant. Although it does appear that some of the options would not meet the Turris coal contract, CWLP directed that this not be considered a requirement for this study. It was discussed that utilities that have changed coal supplies may have faced a contract issue with their original supplier to make the change. The coal contract and the allowance cap were also noted to be related to economics and therefore would not be suitable to be considered in the K-T analysis. Safety was not specifically listed as a technical criteria because it was agreed that this requirement would be included in any option that is implemented.

"Wants" Criteria

Technical criteria that were deemed to be desirable but not mandatory were identified and classified as "Wants". Each of the "Wants" was assigned a numerical weight to reflect its relative importance as compared to the other "Wants" criteria. Each option was then scored on its ability to meet each "Want" criteria. The option judged to meet the criteria the best was given a score of 10 with the other options scored relative to the best option. A weighted score for each option was then calculated for each criteria by multiplying the weight of the option by the judged score. The weighted scores were then added for each option to arrive at the overall option score. The highest overall score identified the best option on the basis of technical merit.

The following "Wants" criteria were suggested by Burns & McDonnell and were based on input received from CWLP and Burns & McDonnell's experience:

- "Minimize reliance on SO₂ allowance market" This criteria provided a measure of the dependence on the external allowance market for each option. If an option does not meet the allowance quantity received by CWLP for the plant, one alternative would be to purchase allowances to cover the extra emissions. This could be costly depending on the market or could restrict additional growth at the site.
- "Minimize PRB coal handling problems at Dallman" Because several of the options involve multiple coal sources, this criteria was included to access the increased difficulty that could be encountered as compared to the current operation at the plant with only one coal source.
- "Ease of operation" This criteria was included in the analysis to indicate the impact of changes on the overall ease of operating the plant given the potential modifications that might be required for a particular option.
- "Reduction of air toxics to aid in meeting future regulatory requirements" Future emission regulations may contain requirements to limit the emission of air toxics such as mercury and

arsenic. The impact of the quality of the coal source and the potential for removal of a certain percentage of these emissions was accessed by the judging of this criteria.

- "Minimize congestion on the plant site" This criteria was included to measure the relative congestion that might be added to the site from modifications required by each option.
- "Minimize vehicle traffic" With some of the changed coal source options considered, a result would be a higher coal burn rate and therefore more trucks required to come on the site and deliver coal. This criteria was used to assess this impact on the plant.
- "Minimal impact on boiler reliability" Because changing the coal burned in the boiler could have an impact on the reliability of the boiler and related auxiliary equipment, this criteria was included. Some existing equipment might operate successfully with a switch in the fuel used, but because of the fuel change experience a shorter life or increased maintenance.

Following discussion of the "Wants", it was decided to change the wording of the second item to read "Minimize coal handling problems" to reflect the global coal handling issues including the transportation, transloading and off-site storage of PRB coal. The remaining "Wants" were agreed to and used to perform the K-T analysis.

K-T Analysis Results

Following agreement on the "Must" and "Wants" criteria to be used for the K-T analysis, the evaluation of each option was performed by CWLP and Burns & McDonnell.

The options added to investigate blends of coals, Option 12 and 13, were reviewed. These options had initially been added to reflect the possibility that blending may be required to allow PRB coal to be burned. After further review it was determined that PRB can probably be burned in the cyclone boilers without blending. If the coal is not blended Option 12 becomes the same as Option 8. It was therefore agreed that Option 12 would be eliminated from further consideration in the study.

The "Must" criteria were reviewed for each option. It was agreed that all of the options met the criteria for maintaining space for NO_x controls to be added at a later date. The "Wants" criteria were then reviewed to determine a weight to assign to each one for use in scoring of the options. The "Wants" weights were determined by a consensus of the CWLP personnel attending the analysis meeting and are as listed below:

WANTS CRITERIA	<u>WEIGHT</u>
Minimize reliance on SO ₂ allowance market	40
Minimize PRB coal handling problems at Dallman	20
Ease of operation	7
Reduction of air toxics to aid in meeting future regulatory requirements	1
Minimize congestion on the plant site	1
Minimize vehicle traffic	1
Minimal impact on boiler reliability	<u>30</u>
TOTAL OF WEIGHTS	100

The "Wants" criteria scores agreed to by consensus of the group performing the K-T analysis are indicated on Table V-1 that is included in Appendix B of this report. It was decided during the K-T analysis meeting that the criteria "Minimize reliance on SO_2 allowance market" would be adjusted following the meeting based on the calculated allowances required for each option. The effect on the K-T analysis due to this adjustment is indicated on Table V-1a - Final K-T Analysis Matrix, included in Appendix B. The details of the adjustment made are shown on Table V-3. Table V-2 was used during the analysis to identify the scope of unit modifications that would be expected for each option.

The highest scoring option based on the analysis of the "Wants" criteria for both the original and final K-T analysis was Option 1. Option 2 was the next highest scoring option.

Option 2 and 11 received the highest score for the "Minimize reliance on SO_2 allowance market" because they both result in excess allowances. Option 6 received the low score for this criteria due to the high number of allowances that would have to be purchased to operate under the conditions of this option.

For the "Minimize coal handling problems" criteria, Options 1 and 6 received a score of 10 because only one type of coal would have to be handled on the plant site and no off-site storage or handling of coal is required. Options 7, 9, 11, and 13 received the lowest scores because they involve several types of coal being burned in the units. Option 6 received the highest score for "Ease of operation". This option reflects the current conditions and operation of the Dallman and Lakeside units. Options 8 and 13 received the lowest score because multiple types of coal are burned, unit modifications would be required, and coal handling changes would be required.

The "Reduction of air toxics to aid in meeting future regulatory requirements" criteria was scored the highest for options 1 and 2 because they involve the addition of FGD systems to Dallman Units 31 and 32. Options 7 and 9 received the lowest scores for this criteria, due to the condition that the Dallman Unit 33 FGD system is shut down.

Option 9 received the highest score for the "Minimize congestion on the plant site" criteria, because the Dallman Unit 33 FGD system would be shut down. Option 13 received the lowest score for this criteria because of the use of three types of coal.

The highest scoring option for the "Minimize vehicle traffic" criteria was Option 6, which is the current operating scenario and involves only one type of coal. Options 11 and 14 received the lowest scores because PRB coal is burned in the Dallman units, which would involve more truck deliveries. The Dallman Unit 33 scrubber is operating for these options also, which would involve limestone deliveries.

Option 6 also received the highest score for the "Minimal impact on boiler reliability". It was estimated that no unit modifications would be required for this option, while the next highest option, option 1 would involve some changes due to the addition of FGD systems to Dallman Units 31 and 32. The lowest scoring option for this criteria is Option 11 because the type of coal burned would change for all units.

!

ECONOMIC ANALYSIS

Following the completion of the K-T analysis, development of capital and operating costs for each option were developed. The costs were input to spreadsheets developed to allow rapid assessment of the effect of changes in the value of key assumption parameters on the "Total Evaluated Cost" of each option. The summary spreadsheet results are displayed on Table V-4. The details for each option are presented in Tables V-4a through V-4m, corresponding to the 13 options that remained after the K-T analysis.

Interpretation of Results

As shown on the "Economic Analysis Summary" sheets, the values in the outlined "data entry boxes" represent the inputs for the key variables on which that particular printout is based. The key variables are:

- Allowance price (Range evaluated was \$100 to \$300)
- CEMS bias factor (This is the effective ratio of total annual SO₂ emissions reported to the U.S. EPA by the continuous emission monitoring system to the apparent value based on the fuel analysis and the Unit 33 removal efficiency. Based on 1996 data, this ratio is 1.137 composite for the five coal-fired units. The data for 1997 is similar.)
- Unit 33 SO₂ removal efficiency. (Base assumption for the study is 90%).

Other "variables" for which text entry boxes have been included on the summary spreadsheet include the unit capacity factors and the delivered price of PRB coal. These were incorporated into the electronic version of these spreadsheets to facilitate sensitivity analyses. However, it should be noted that, at CWLP's direction, the basis for this study was a 80% capacity factor for Dallman 3, 70% for Dallman 1 and 2, and 50% for the Lakeside units. As displayed on the tables, this represents a total net generation of 2,409,000 MWh for the coal-fired units. Also, the \$24.25/ton price for PRB coal (equivalent to \$1.45 per million Btu) represents the best estimate available at this time of the actual price CWLP would pay to purchase and ship PRB coal from Wyoming, transload it to trucks at Pawnee Transportation, and truck it to the plant site. Other assumptions used in the study are listed in Appendix A.

The result of the economic analysis for each option is expressed as "Total Evaluated Cost", expressed as \$/MWh. It should be noted, however, that this is not equivalent to the true power production cost. A lack of valid data on fixed O & M costs for the plant prevented the analysis of complete production costs.

The economic analysis was done on a "zero banking of allowances" basis. This means that any shortfall in allowances compared to annual CEMS-biased emissions was made up by purchasing the necessary

allowances at the indicated price. Similarly, any surplus of allowances was converted to cash by assuming they would be sold at the indicated price.

The summary sheet provides an indication of the total tonnage of each type of coal burned at the plant based on the specified input data and assumptions. While this data allows CWLP to make a rapid determination of the extent to which a given option is in compliance with the terms of CWLP's coal supply contract with the Turris Coal Company, the reader is advised that no costs or penalties which may result from violation of this contract have been included in the economic analysis presented here.

Finally, note that the "Modification O & M" cost is not zero for Option 6, which is the base case representing the current situation. The "modification cost" reflects the projected operation and maintenance costs for the Unit 33 FGD system. It was necessary to include this factor in the economic analysis of each option because the existing FGD system plays a major role in the total SO₂ emissions from the Lakeside/Dallman complex, and because some options include the shutdown of this FGD system. Therefore, to provide a valid comparison, all cases, including the base case or "Status Quo", must include the FGD O & M cost.

Trends Observed

Review of the tabulated results indicates that the FGD retrofit options (Option 1 and 2) are among the lowest-cost options on a \$/MWh "total evaluated cost" basis. However, these same two options represent by far the most capital-intensive options.

The "status quo" case (Option 6), which has zero capital cost but maximum allowance expenditure, is seen to be the lowest cost option on a "total evaluated cost" basis only for cases in which the allowance price is near \$100, the bottom of the range established for this study.

Options 11, 13, and 14, in which the Unit 33 scrubber is still operated after that unit has switched to PRB coal, represent some of the highest "evaluated cost" options.

Table V-4 [100] Economic Analysis Summary Phase II SO₂ Compliance Options

The Analysis Displayed Below is Based on:			Unit Capacity Factors	Used Are:	Cost of Debt = 6%
Allowance Price of	100 \$/ton		Daliman 3	80.0%	Book Life (from 2000):
CEMS Bias Factor of	1.137 times the fu	al-based expected SO2 emissions	Dailman 2	70.0%	Dailmen = 20 years
Unit 33 FGD removal of	90% for the case:	s where it is in service	Daliman 1	70.0%	Lakeside = 12 years
PRB coal price (delivered to the plant) of	24.25 \$/ton, or	1.448 \$/MBtu @ 8375 Btu/b	Lakeside 7/8	50.0%	
			Lakeside 6/7	50.0%	
			Resulting in Net Gene	ration of	2,409,000 MWH

					SOZ	Allowance	Fuel Cost	Capital	Carrying	Modification	Total Fuel,	Capital	Allowance		
Annual Tons Coal Burned by Type					Emitted	Balance	Annual	Cost	Charge	O&M	and O & N	Cost	Expenditure	Total Evalu	ated Cost
Option	Description*	Turris	PRB	Monterey	Tons	Tons	\$	\$	\$/yr	\$/ут	\$/ут	\$/MWh	\$/yr	\$	\$/MWh
1	100% Turris; FGD on D1 & D2	1,314,705	0	0	17,055	(4,963)	28,923,509	24,450,000	2,131,662	4,400,477	35,455,649	14.72	496,281	35,951,930	14.92
2	Montemy @ Lakeside; FGD on D1 & D2	1,149,779	0	169,410	9,670	2,422	29,699,799	24,543,000	2,142,755	4,432,242	36,274,795	15.06	(242,239)	36,032,558	14.96
3	Montanay 2 Lakeside; No FGD retrofit	1,149,77 9	0	169,410	41,782	(29,690)	29,699,799	93,000	11,093	2,869,811	32,580,702	13.52	2,969,030	35,549,733	14.76
4	Option 3 with Monterey @ D1 & D2	645,028	0	687,908	19,181	(7,089)	32,076,220	5,315,000	467,301	2,967,029	35,510,551	14.74	708,858	36,219,409	15.04
5	Option 4 with Turns at Lakeside	609,954	0	518,498	26,566	(14,474)	31,299,931	5,193,000	452,749	2,935,265	34,687,945	14.40	1,447,378	36,135,323	15.00
6	100% Turris; No FGD retrofit (status quo)	1,314,705	0	0	49,168	(37,076)	28,923,509	0	0	2,838,047	31,761,556	13.18	3,707,551	35,469,107	14.72
7	Monterey @ 1.5; PRB @D1,283; FGD off	0	1,465,630	169,410	15,375	(3,283)	39,946,193	9,205,670	805,577	902,532	41,654,302	17.29	328,271	41,982,572	17.43
8	Monterey @ LS; PRB @D1&2; Turris @D3	645,028	643,393	169,410	13,122	(1,030)	34,197,558	10,923,472	955,343	3,252,087	38,404,968	15.94	103,018	38,507,986	15.99
9	Option 7 with Turris @ LS; FGD off	164,926	1,465,630	0	22,760	(10,668)	39,169,903	9,112,670	794,484	870,768	40,835,155	16.95	1,066,791	41,901,946	17.39
10	Turris @ LS & D3; PRB @ D1 & D2	809,954	643,393	0	20,507	(8,415)	33,421,269	10,830,472	944,250	3,220,303	37,585,822	15.60	841,538	38,427,360	15.95
11	Option 7 with D3 FGD On	0	1,465,630	169,410	9,460	2,632	39,946,193	9,105,670	796,658	3,559,328	44,302,379	18.39	(263,230)	44,039,148	18.28
13	Option 3 with 60/20 PRB/Turnis blend @D3	660,741	623,959	169,410	39,013	(26,921)	34,071,959	10,413,758	910,903	3,097,205	38,080,067	15.81	2,692,072	40,772,140	16.92
14	Option 9 with D3 FGD Qn	164,926	1,465,630	0	16,845	(4,753)	<u>39,169,903</u>	9,012,670	785,766	3,527,563	43,483,232	18.05	475,290	43,958,522	18.25

_

*Note: D3 FGD is On except where noted

Table V-4 [200] **Economic Analysis Summary** Phase II SO₂ Compliance Options

The Analysis Displayed Below is Based on:			Unit Capacity Factors Us	ed Are:	Cost of Debt = 6%
Allowance Price of	200 \$/ton		Daliman 3	60.0%	Book Life (from 2000);
CEMS Bias Factor of	1.137 times the	fuel-based expected SO ₂ emissions	Daliman 2	70.0%	Daliman = 20 years
Unit 33 FGD removal of	90% for the ca	ses where it is in service	Daliman 1	70.0%	Lakeside = 12 years
PRB coal price (delivered to the plant) of	24.25 \$/ton, or	1.448 \$/MBtu@ 8375 Btu/b	Lakeside 7/8	50.0%	
			Lakeside 6/7	50.0%	
			Resulting in Net Generation	on of	2,409,000 MWH

					SO2	Allowance	Fuel Cost	Capital	Carrying	Modification	Total Fuel,	Capital	Allowance		
	Annual Tons Coal Burned by Type					Balance	Annual	Cost	Charge	0&M	and O & N	A Cost	Expenditure	Total Evalu	ated Cost
Option	Description*	Turnis	PRB	Monterey	Tons	Tons	\$	\$	\$/yr	\$/yr	\$/ут	\$/MWh	\$/yr	\$	\$/MWh
1	100% Turris; FGD on D1 & D2	1,314,705	0	0	17,055	(4,963)	28,923,509	24,450,000	2,131,662	4,400,477	35,455,649	14.72	992,563	36,448,212	15.13
2	Monteney (2) Lakeside; FGD on D1 & D2	1,149,779	Û	169,410	9,670	2,422	29,699,799	24,543,000	2,142,755	4,432,242	36,274,795	15.06	(484,478)	35,790,318	14.86
Э	Monterey @ Lakeside; No FGD retrofit	1,149,779	Ó	169,410	41,782	(29,690)	29,699,799	93,000	11,093	2,869,811	32,580,702	13.52	5,938,061	38,518,763	15.99
4	Option 3 with Monterey @ D1 & D2	645,028	0	687,908	19,181	(7,089)	32,076,220	5,315,000	467,301	2,967,029	35,510,551	14.74	1,417,716	36,928,267	15.33
5	Option 4 with Turnis at Lakeside	809,954	0	518,498	26,566	(14,474)	31,299,931	5,193,000	452,749	2,935,265	34,687,945	14.40	2,894,757	37,582,702	15.60
6	100% Turris; No FGD retrafit (status quo)	1,314,705	0.	0	49,168	(37,076)	28,923,509	0	0	2,838,047	31,761,556	13.18	7,415,101	39,176,657	16.26
X7	Monterey @ LS; PRB @D1,283; FGD off	0	1,465,630	169,410	15,375	(3,283)	39,946,193	9,205,670	805,577	902,532	41,654,302	17.29	656,541	42,310,843	17.56
8	Monterey @ LS; PRB @D1&2; Turns @D3	_645,028	643,393	169,410	13,122	(1,030)	34,197,558	10,923,472	955,343	3,252,067	38,404,968	15.94	206,036	38,611,004	16.03
×9	Option 7 with Turnis @ LS; FGD off	164,926	1,465,630	0	22,760	(10,668)	39,169,903	9,112,670	794,484	870,768	40,835,155	16.95	2,133,582	42,968,737	17.84
10	Turris @ LS & D3; PRB @ D1 & D2	809,954	643,393	0	20,507	(8,415)	33,421,269	10,830,472	944,250	3,220,303	37,585,822	15.60	1,683,077	39,268,898	16.30
×11	Option 7 with D3 FGD On	0	1,465,630	169,410	9,460	2,632	39,946,193	9,105,670	796,858	3,559,328	44,302,379	18.39	(526,461)	43,775,918	18.17
13	Option 3 with 80/20 PRB/Turns blend @D3	660,741	623,959	169,410	39,013	(26,921)	34,071,959	10,413,758	910,903	3,097,205	38,080,067	15.61	5,384,145	43,464,212	18.04
14	Option 9 with D3 FGD On	164,926	1,465,630	0	16,845	(4,753)	39,169,903	9,012,670	785,766	3,527,563	43,483,232	18.05	950,580	44,433,812	18.44

*Note: D3 FGD is On except where noted

Table V-4 [300] **Economic Analysis Summary** Phase II SO₂ Compliance Options

The Analysis Displayed Below is Based on:			Unit Capacity Factors	Used Are:	Cost of Debt = 6%
Allowance Price of	300 \$/ton		Daliman 3	80.0%	Book Life (from 2000):
CEMS Bias Factor of	1.137 times the fuel-	based expected SO ₂ emissions	Daliman 2	70.0%	Dailman = 20 years
Unit 33 FGD removal of	90% for the cases v	vhere it is in service	Daliman 1	70.0%	Lakeside = 12 years
PRB coal price (delivered to the plant) of	24.25 \$/ton, or	1.448 \$/MBtu @ 8375 Btu/b	Lakeside 7/8	50.0%	
			Lakeside 6/7	50.0%	
			Resulting in Net Gene	ration of	2.409.000 MWH

						Allowance	Fuel Cost	Capital	Carrying	Modification	Total Fuel,	Capital	Aliowance		
	Annual Tons Coal Burned by Type					Balance	Annual	Cost	Charge	0&M	and 0 & N	Cost	Expenditure	Total Evalu	ated Cost
Option	Description*	Turris	PR8	Monterey	Tons	Tons	\$	\$	\$/ут	\$/yr	\$/yr	\$/MWh	\$/ут	\$	\$/MWh
1	100% Turns; FGD on D1 & D2	1,314,705	0	0	17,055	(4,963)	28,923,509	24,450,000	2,131,662	4,400,477	35,455,649	14.72	1,488,844	36,944,493	15.34
2	Montarey @ Lakeside; FGD on D1 & D2	1,149,779	0	169,410	9,670	2,422	29,699,799	24,543,000	2,142,755	4,432,242	36,274,795	15.06	(726,717)	35,548,079	14.76
3	Monterey @ Lakeside; No FGD retrolit	1,149,779	0	169,410	41,782	(29,690)	29,699,799	93,000	11,093	2,869,811	32,580,702	13.52	8,907,091	41,487,793	17.22
4	Option 3 with Monterey @ D1 & D2	645,028	0	687,908	19,181	(7,089)	32,076,220	5,315,000	467,301	2,967,029	35,510,551	14.74	2,126,574	37,637,125	15.62
5	Option 4 with Turnis at Lakeside	809,954	0	516,498	26,566	_(14,474)	31,299,931	5,193,000	452,749	2,935,265	34,687,945	14.40	4,342,135	39,030,080	16.20
6	100% Tunis; No FGD retrafit (status quo)	1,314,705	0	0	49,168	(37,076)	28,923,509	0	0	2,838,047	31,781,556	13.18	11,122,652	42,684,208	17.80
7	Monterey @ LS; PRB @D1,2&3; FGD off	0	1,465,630	169,410	15,375	(3,283)	39,946,193	9,205,670	805,577	902,532	41,654,302	17.29	984,812	42,639,113	17.70
8	Monterey @ LS; PRB @D182; Turris @D3	645,028	643,393	169,410	13,122	(1,030)	34,197,558	10,923,472	955,343	3,252,067	38,404,968	15.94	309,054	38,714,022	16.07
9	Option 7 with Turnis (2) LS; FGD alf	164,926	1,465,630	0	22,760	(10,668)	39,169,903	9,112,670	794,484	670,768	40,835,155	16.95	3,200,372	44,035,528	18.28
10	Turria @ LS & D3; PRB @ D1 & D2	609,954	643,393	0	20,507	(8,415)	33,421,269	10,830,472	944,250	3,220,303	37,585,822	15.60	2,524,615	40,110,437	16.65
11	Option 7 with D3 FGD On	0	1,465,630	169,410	9,460	2,632	39,946,193	9,105,670	796,858	3,559,328	44,302,379	18.39	(789,691)	43,512,688	18.06
13	Option 3 with 60/20 PRB/Turns blend @D3	660,741	623,959	169,410	39,013	(26,921)	34,071,959	10,413,758	910,903	3,097,205	38,080,067	15.81	6,076,217	46,156,285	19.16
14	Option 9 with D3 FGD On	164,926	1,465,630	0	16,845	(4,753)	39,169,903	9,012,670	785,766	3,527,563	43,483,232	18.05	1.425.870	44,909,102	18.64

"Note: D3 FGD is On except where noted

APPENDIX A STUDY BASIS AND ASSUMPTIONS

APPENDIX A STUDY BASIS AND ASSUMPTIONS

D3	D2	D 1	L7/8	L6/7	
175	75	75	30	30	
80	70	70	50	50	
11045	11452	11596	13199	13159	
n/a	11484	11628	13235	13195	
11230	11643	11 79 0	n/a	n/a	
7.0	7.0	7.0	n/a	n/a	
35	35	35	n/a	n/a	
to fuel	cost for	the resp	pective	unit, in	\$/mmBtu
	D3 175 80 11045 n/a 11230 7.0 35 to fuel	D3 D2 175 75 80 70 11045 11452 n/a 11484 11230 11643 7.0 7.0 35 35 to fuel cost for	D3 D2 D1 175 75 75 80 70 70 11045 11452 11596 n/a 11484 11628 11230 11643 11790 7.0 7.0 7.0 7.0 35 35 35 to fuel cost for the resp	D3 D2 D1 L7/8 175 75 75 30 80 70 70 50 11045 11452 11596 13199 n/a 11484 11628 13235 11230 11643 11790 n/a 7.0 7.0 7.0 n/a 35 35 35 n/a to fuel cost for the respective	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 SO_2 emission factor = 95% of potential emission based on %S and HHV CEM Bias Factor = 1.317 (used only to determine allowance requirements)

FGD Assumptions

Unit 31/32 EGD capital cost =	\$163/kW/(net)
Unit 51/52 FOD capital cost –	
Unit 31/32 fixed FGD O&M =	\$6.825/kW-yr
Unit 33 fixed FGD O&M cost =	\$12.00/kW-yr
Unit 31/32 FGD aux power =	2.0% of gross MW generation for the unit
Unit 31/32 aux power cost =	fuel cost for the respective unit, \$/mmBtu
Unit 33 FGD aux power =	2.5% of gross MW generation for the unit
Unit 33 aux power cost =	fuel cost for the respective unit, \$/mmBtu
Limestone Utilization =	95.0%
Limestone Purity (% $CaCO_3$) =	95.4%
Limestone cost =	\$12.16/ton
Gypsum Purity (%CaSO ₄ •2H ₂ O)=	95%
Gypsum Moisture, % =	13%
Gypsum sale price =	\$3.00/ton
Blanking plate cost for Options 7 & 9	\$50,000

Relocation of COMS (Options 7 & 9) \$50,000 \$50,000 Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

Coal Assumptions	
HHV for Turris (Btu/lb)	10,500
%S for Turris	3.1%
Price for Turris (delivered)	\$22.00/ton
HHV for Monterey (Btu/lb)	10,250
%S for Monterey	1.0
Price for Monterey (delivered)	\$26.00/ton
HHV for PRB (Btu/lb)	8,375
%S for PRB	0.37
Price for PRB (delivered)	\$24.25/ton (includes \$3.0 transload plus truck haul)
Blend % for option 13 (PRB/Turris)	80%/20% (mass basis)
Fluxing limestone blend ratio for Monterey	= 1.5% of coal feed rate, mass basis
Fluxing limestone delivered cost =	\$12.50/ton
Economic Assumptions	
Book life, Dallman	20 years (year 2000 is year No. 1)
Book life, Lakeside	12 years (year 2000 is year No. 1)
Cost of money	6.00%
Tax rate	0.0%
Inflation	Not included
Alowance Price Range	\$100 to \$300 each
(one allowance $= 1 \text{ ton } SO_2$)	

***** PC #1 ****

CITY WATER, LIGHT AND POWER ENVIRONMENTAL EMISSIONS WORKSHEET 1997 ACTUAL GENERATION DATA, CEM AND ESTIMATED EMISSIONS DATA New Emissions Factors

			COAL	COMBUSTION TURBINES									
		Dallman	Dallman	Dallman	Lakeside	Lakeside	Coal Unit		Factory	Reynolds	Interstate	GT	GRAND
	UNITS	3	2	1	Gen 7/Bir 8	Gen 6/Bir 7	TOTAL	UNITS	GT	GT	GT	TOTAL	TOTAL
Nominal Net Rating	MW	175	75	75	30	30	385	- MW	10	15	115	148	533
Capacity Factor	<u>%</u>	70.8%	64.1%	61.9%	49.2%	48.7%	64.3%	- %	1.22%	0.71%	4.35%	3.60%	47.46%
Net Generation	MWH	1,084,642	420,828	406,412	129,419	127,872	2,169,173	MWH	1.923	927	43.784	46.634	2,215,607
Fuel Burn	Tons Coal	572,005	229,759	225,001	81,422	80,197	1,188,384	Gallons Oit	202,211	114,225	438 135	754.571	2 697 526
Fuel Burn								Dih. Gas			485,330	485,330	
Net Heat Rate	BTUKWH	11,045	11,452	11,596	13,199	13,159	11,466	BTUKWH	14,514	17.006	12,465	12.640	11.491
Heat Input*	MMBTU	11,968,374	4,809,689	4,709,239	1,705,297	1,679,755	24,872,354	MMBTU	27,905	15,763	545,793	589,461	25.461.815
Coal Heat content	BTU/Ib	10,462	10,467	10,465	10,472	10,473	10,465				_		
Fuel Sulfur Content	%	3.13%	3.13%	3.13%	3.13%	3.13%	3,13%	· *	0.24	0.24	0.24	0.04	
Raw SO2 Emission Rale**	#/ton coal	118.94	118.94	118.94	118.94	118.94	118.94	#/1000 Gal.	0.0335	0.0335		0.0335	-
SO2 Cleanup Efficiency	%	84.7%	0.0%	0.0%	0.0%	0.0%	40.7%	%	0.0%	0.0%		0.0%	
Net SO2 Emission Rate	#/ton coal	18.24	118.94	118.94	118.94	118.94	70.48	#/1000 Gal.	0.0335	0.0335	· , 	0.033	····
NOx Emission Rate	#/ton coal	14.4	33.8	33.8	33.8	33.8	24.5	#/1000 Gal.	0.0050	0.0028		0.004	
Paticulate Emission Rale	#/Ion coal	0,7704	0.1541	0.1541	0,1541	0.1541	0.4506	#/1000 Gal.	0.0004	0.0002		0.000	
CO Emission Rate	#/lon coal	0.5	0.5	0.5	0.5	0.5	0.5	#/1000 Gal.	0.0003	0,0002		0.000	
VOM Emission Rate	#/ton coal	0.07	0.07	0.07	0.07	0.07	0.07	#/1000 Gal,	0.0003	0.0002		0.000	
Po Emission Rate	#/ion coal	0.0106	0,0106	0.0106	0.0106	0.0106	0.0106	#/1000 Gal.	0.000000	0.000000		0.000000	
PM10 Emission Rale**	#/ton coal	0.004770	0,001049	0.001049	0.001049	0.001049	0.002840	#/1000 Gal.	0.0003	0.0002		0.000	
CO2 Emission Rale	#/ton coal	4,321	4,250	4,249	4,252	4,252	4,284	#/1000 Gal.	22.908	22,908		22,908	
Raw SO2 Emission Rate	#/MMBTU	5.6845	5,6918	5.6828	5,6790	5.6786	5,6829	#/MMBTU	0.2424	0.2424	0.2424	0.0428	1
Net SO2 Emission Rate	#/MMBTU	0.8717	5.6818	5.6828	5,6790	5.6786	3,3677	#/MMBTU	0.242	0.242	0.008	0.043	
NOx Emission Rate	#/MMBTU	0.6882	1.6146	1.6149	1.6138	1.6137	1.1689	#/MMBTU	0.036	0.020	0.125	0.698	
Paticulate Emission Rate	#/MMBTU	0.0368	0.0074	0.0074	0.0074	0.0074	0.0215	#/MMBTU	0.003	0.002	0.037	0.061	
CO Emission Rate	#/MMBTU	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	#/MMBTU	0.002	0.001	0,249	0.048	
VOM Emlasion Rate	#/MMBTU	0.0033	0.0033	0.0033	0.0033	0.0033	0.0033	#/MMBTU	0.003	0.001	0.021	0.017	
Pb Emission Rate	#/MMBTU	0.000507	0.000507	0.000507	0.000507	0.000507	0.000507	#/MMBTU	0.000003	0.000002	0.000051	0.000058	
PM10 Emission Rate	#/MMBTU	0.000228	0.000050	0.000050	0.000050	0.000050	0.000136	#/MM8TU	0.002	0.001	0.037	0.0293	
CO2 Emission Rate	#/MMBTU	206.5	203.0	203.0	203.0	203.0	204.7	#/MMBTU	166.000	166.000	166.000	166.000	
					CALCULA	TED EMISS	IÓNS						
		Daliman	Daliman	Daliman	Lakeside	Lakeside	Coal Unit		Factory	Reynolds	Interstate	GT	GRAND
POLLUIANI		3	2	1	Gen 7/Bir 8	Gen 6/Blr 7	TOTAL		<u>ĢT</u>	GT	GT	TOTAL	<u>TOTAL</u>
<u>502</u>	Tons	5,216.53	13,663.77	13,380.81	4,842.17	4,769.32	41,880.86	Tons ,	0.9900	0.5590	2.3050	3.8540	41,884.71
	Tons	4,118.44	3,882.93	3,802.52	1,376.03	1,355.33	14,536.83	Tone	9.8780	5,5800	34.0370	49.4950	14,586.33
Parinculates	1006	220.34	17.70	17.33	6.27	6.18	267.77	Tons	0.8630	0.4880	10,1810	35.3880	303.16
	Ions	9,555.30	17,564.40	17,200.66	6,224.47	6,130.82	56,685.47	Tons	11.7310	6.6270	46.5230	86.7370	56,774.20
	Tons	143.00	57.44	56.25	20.36	20.05	297.10	anoT	0.6790	0.3840	67.9500	69.0130	366.11
	ions	20.02	8.04	7.88	2.85	2.81	41.59	anoT	0.6880	0.3860	<u>5.8250</u>	6.9010	48.49
	1003	3.03	1.22	1.19	0.43	0.43	6.31	Tona	0.0008	0.0005	0.0140	0.0153	6.32
		1.36	0.12	0.12	0.04	0.04	1.69	Tons	0.5380	0.3040	10,1810	11.0230	12.71
	Tons	1,235,734,62	488,183.43	477,987.76	173,087.65	170,495,13	2,545,488.59	Tons	2,316.12	1,308.33	45,300.79	48925.2462	2,594,413.03
IUTAL EXCEPTICOZ	1005	9,722.72	<u>17,631.22</u>	1 <u>7,</u> 266,10	6,248.15	<u>6,154.15</u>	<u>57,032,15</u>		13.6368	7.7035	130.4930	175.6893	57,207.84

· Based on coal burn only.

, -,_{*},²-**∳**

** Based on 9.54% average coal ash content

.

SUMMARY OF CWLP ALLOWANCE ALLOCATIONS

,

	2000-2009	2010 thereafter
Dallman 3	5,169	5,208
Dallman 2	1,569	1,570
Dallman 1	1,377	1,388
Lakeside 7	2,539	633
Lakeside 8	1,438	326
TOTAL	12,092	9,125

- Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

1996 CEM VS UNIT EFFICIENCY DATA												
		Dallman	Dallman	Dallman	Lakeside	Lakeside	Lakeside	Coal Unit				
ITEM	UNITS	3	2	1	Gen 7/Blr 8	Gen 6/Blr 7	TOTAL	TOTAL				
Heat Input (CEM)	MMBTU	13,899,898	5,338,498	5,192,441			2,186,656	26,617,493				
Heat Input (Unit Efficiency)	MMBTU	11,804,067	4,992,489	4,576,125	952, 9 42	1,085,690	2,038,632	23,411,313				
Difference	MMBTU	2,095,831	346,009	616,316			148,024	3,206,180				
Percent Difference	%	17.76%	6.93%	13.47%			7.26%	13.70%				
SO2 (CEM)	Tons	6,187.4	15,160.7	14,130.6			6,044.1	41,522.8				
SO2 (With Plant heat input)	Tons	5,254.5	14,178.1	12,453.4			5,634.9	36,521.2				
SO2 Difference	Tons	932.9	982.6	1,677.2			409.2	5,001.6				

	•	· · · · · · · · · · · · · · · · · · ·				<u> </u>			•
	• •	Turri	5 MINE	,		•			
	Kine 4	Elthert	Mining Area			•			۰.
•	Property Name	<u>- Fiantic</u>	Property		Sean .	Name	llinois No. 5		
				· .				-	
	U.S. Coal	••					••••		
	DISTRICT	10	<u> </u>		negan	- State	11110015	_	
						•	•		
•.•					•		colected Washed		
			Dr111	Core Date	•	•••	Product (C)		
					ashed (B)		Washed		
		Ra	v (A)	e	1.70 SP.	<u>GR(</u>	1.71 SP. CR.		
		(P	ry)	· · · ·	(Dry)	—	"As Received"		
• • • •	Provinate Analy	vis-			. • . •:	_			-
	•		•						
4	folscure	14.4	17		· - 1		10.0 1	1.9 -	10.32
	Noletile .	10.3	67		9.577			· · /	
	Tired Carbon	46.2	37 .		8.84Z		- 1	- 805	ave, 8
.	BTU/Lb.	12,10	8	1	456		10.450	•	
.:	Sulphur	4.2	02		3.727	•	2.70%		•
•		• • • • •	• .•• •	• • •					
• • •	Ultimate Analys	513			. •	mor	· A. Rack		
• •		• •			• -	- MAR		•	
	Moisture		X		<u> </u>	78.7	11.	•	
		68.0			9.38Z	· r'all	• 56.64	•	,
<i>.</i> .	Nittogen ·	4,0	17		1.367	5,74	4.13		
	Chlorine	0.0	9 Z		0.223	7.57	1.11		
•	Selphur	4.2	oz		3.722	4.21			
•	Ash	13.3	3Z .	· · · 1	1.592	1.21	3.03		•
·	Oxygen (Diff)	. 8.2	BX	•	8.522	9.64	· 6.5 V		
-		. •		15	0 56	• - •	• •		·
	Ash Mineral Ana	lysis		•	· .	÷			
•			- -			· .	• •	· . : .	
	S102	. 32.1	27		5.712		• ·	• • •	
	A1203	10.2	34 -		0 007 -				
	T(02	· 23.3	57		0.787				-
	CaO	14.8	17		8.427	•	۰.	•	• •
•	MgO	0.4	42		0.712			•	
۰.	Na20	1.0	BZ		1.122 -				
	X2 0	. 1.3	72		1.552 -				
	P205	1.1	.17		0.132 -			•	
	\$03	- 13.6	27		8.7 1		•		
	Undetermined	1.2	92		1.262				
	•			•			• • • •		· .
	Diston Temperat	NITER OF Joh				`			· .
									,
	•	Rav.	• .	Vashed (1.70 SP.	GR.			
•	• 7	(Reducing) (Oxidizing)	(Reducing) (Oxidi	zing)	•	•	
•	Initial			•	•••	•		•	
	Deformation	1923 . r	2160°F	1940"]	22	00°F	•		•
	Benispherical					/ • • •			
	(H=1/24/) Thursd	2004 1	2328-1	7420 1	23	60°5° .			
•	11010	4130 F	2414 Y P	Jone .			•		
				22.20	4:=1/72	• •		'	
	Grindability	= 56.8		-		•			
	• <u>•</u>								
	<u>T230</u>	= 2180	°F			•			
	Sulphur Jora (1	RAN, Dry):	Organic	1.94					
			Fyritic .	2.20					
		•	JUZ	4.70			•		
			JULAI	4140					
									•
		t	•						
					,				

Electronic Filing - Received, Clerk's Office, November 21, 2008 **^{*}** PC #1 ****

Typical Coal Quality

Average-As Received Basis

ł

Ash Elements, wt% as Oxide

CABALLO Mine:

Location: Campbell County, Wyoming, near Gillette Type of Coal: Subbituminous; crushed run-of-mine Loading Capability: Burlington Northern Railroad Chicago & North Western Transportation Company

Proximate Analysis, wt%

Total Moisture		29.90	Ash Elements, wt% as Oxide
Ash		5.31	Phosphorus Pentoxide,
Volatile Matter		31.36	Silicon Dioxide
Fixed Carbon		33.43	Ferric Oxide,
Sulfur		_37	Aluminum Oxide.
Gross Calorific Value			Titanium Dioxide.
Bullb		8450	Calcium Oxide,
Kcal/kg		4,694	Magnesium Oxide,
			Sulfur Trioxide,
Ultimate Analysis, wt%			Potassium Oxide.
			Sodium Oxide.
1 0(2) Moisture		29.90	Other
Carbon		48.52	Sulfur Forms, wt%
Hydrogen		3.40	
Nitrogen		0.71	Pyritic
Chlorine		0.02	Sulfate
Sulfur		0.37	Organic
Ash		5.31	
Oxygen		11.79	Other Quality Factors
Ash Fusion Temperature	•F	°C	Equilibrium Moisture, wt% Hardgrove Grindability Inde
Reducing			HGI Moisture, wt%
Initial Deformation	2135	1170	Base to Acid Ratio
Softening, H = W	2165	1285	Pounds SO, per Million Btu
Hemispherical, H = 1/2 W	2280	1195	Size
Fluid	2230	1220	
Oxidizing			
Initial Deformation	2185	1195	
Softening, H = W	2210	1210	
Hemispherical, H = 1/2 W	2220	1215	
Fluid	2295	1255	

Phosphorus Pentoxide,	P,O,	0.93
Silicon Dioxide	SiO,	34.53
Ferric Oxide,	Fe.Ö,	5.02
Aluminum Oxide.	ALO,	17.98
Titanium Dioxide.	TiÔ	1.25
Calcium Oxide,	CaO	20.91
Magnesium Oxide,	MgO	3.75
Sulfur Trioxide.	so,	12.54
Potassium Oxide.	ĸó	0.41
Sodium Oxide.	NŁO	1.58
Other	•	1.10
Sulfur Forms, wt%		
Рутіцс		0.06
Sulfate		0.01
Organic		0.30
Other Quality Factors		
Equilibrium Moisture, wt%		28.4
Hardgrove Grindability Index	k, HGI	60
HGI Moisture, wt%		21.8

0.59

0.88 2 inches x 0

Erron Coal and Minerals Company-Houston, Texas, U.S.A.-May 1, 1990

Electronic Filing - Received, Clerk's Office, November 21, 2008 ***** PC #1 ****

Typical Coal Quality

¢

۶

2

Average-As Received Basis

RAWHIDE Mine:

Location:	Campbell County, Wyoming, near Gillette
Type of Coal:	Subbinuminous; crushed run-of-mine
Loading Capability:	Burlington Northern Railroad

Proximate Analysis, wt%

. • `

Total Moisture		30.00
Ash		5.15
Volatile Matter		31.21
Fixed Carbon		33.54
Sulfur		36
Gross Calorific Value		
ВпиЛь		8300
Kcal/kg		4.611
Ultimate Analysis, wt%		
Total Moisture		30.00
Carbon		48.07
Hydrogen		3.29
Nitrogen		0.69
Chlorine		0.01
Sulfur		0.36
Ash		5.15
Oxygen		12.44
Ash Fusion Temperature	۴F	•C
Reducing		
Initial Deformation	2160	1185
Softening, H = W	2190	1200
Hemispherical, H = 1/2 W	2205	1210
Fluid	2225	1220
Oxidizing		
Initial Deformation	2205	1210
Softening, H = W	2225	1220
Hemispherical, H = 1/2 W	2240	1230
Fluid	2265	1240

Ash Elements, wt% as Oxide		
Phosphorus Pentoxide,	P,O,	0.67
Silicon Dioxide	SiO,	31.11
Ferric Oxide,	Fe,Ô,	5.75
Aluminum Oxide,	ALO,	14.14
Titanium Dioxide.	TiÔ,	1.00
Calcium Oxide.	CaO	24.12
Magnesium Oxide,	MgO	5.45
Sulfur Trioxide,	so,	14.18
Potassium Oxide,	ĸŎ	0.23
Sodium Oxide,	NLO	1.33
Other	•	2.02
Sulfur Forms, wt%		
Ругіціс		0.07
Sulfate		0.02
Organic		0.27
Other Quality Factors		
Equilibrium Moisture, wr%		29.7
Hardgrove Grindability Index,	HGI	59
HGI Moisture, wt%		21.5
Base to Acid Ratio		0.79
Pounds SO, per Million Bru		0.87
Size	2 is	ches x 0

^{*}* PC #1 *****

4411	- 0004	4-5

20 11-00048-2

11/13/95

11/08/95 to .11/08/96

CLIENT

Sampled By_____

Freeburg , IL 62243-0039

8413 Peabody Road (Shipping)

STANDARD LABORATORIES, INC.

Date: 12/20/96

Sample ID: 961104802

CITY WATER, LIGHT AND POWER DALLMAN POWER PLANT ROOM 211, MUNICIPAL BLDG. SPRINGFIELD, IL 62701 ATTN: GREGG FINIGAN

mark: DALLMAN POWER PLANT - MONTEREY COAL DRY BASIS MERCURY 0.07 UG/G

						We	ight 3
		As	Dry	CWLP		As	Dry
OXIMATE ANGLY	YSIS	Received	Basis	The second	ultimate analysis	Received	Basis
Moisture	D3302	*****	*****		f Moisture 🔹 D3302	*****	*****
<u>Xeh</u>	D3174	*****	10.83	11.12	S Carbon D5373	*****	71.57
Volatile	D3175	****	37.39		t Eydzogen D5373	*****	4.72
Fixed Carbon	D3172	*****	51.7B		t Nitrogen D5373	*****	1.53
stu	D1989	******	12475	12393	f Chlorice D2361	*****	0.12
`^:-BTU	D1989		13990	13943	sulfur D4239	*****	1,16
al Sulfur	D4239	*****	1.18	1.20	ት እsh D3174	****	10.83
					ł Oxygen (Diff.) D3176	*****	10.05
ILFUR FORMS							
Pyritic	D2492	*****	*****	1	MINERAL ANALYSIS D3652	% Ignite	d Easi:
Sulfate	D2492	*****	****		Phos. Pentoxide, P205		0.25
Organic	D2492	*****	- *****		Silica, SiO2		54.94
Total Sulfur	D4239	*****	1.18	1.20	Ferric Oxide, Fe2O3		9.32
					Alumina, Al203		19.38
TER SOLUELE				1	Titania, TiO2		1.12
Na2O	ASME1974	*****	****		Lime, CaO		5.4(
K20	ASME1974	*****	****		Magnesia, MgO		1.20
Chlorine	ASME1974	*****	****		Sulfur Trioxide, SO3		3.3:
					Potassium Oxide, K20		2.44
Lkalies as Nat	20 ASME197	*****	*****		Sodium Oxide, Na2O		1.50
					Barium Oxide, BaO		0.0:
ISION TEMP. OF	F ASH D1857	Reducing	Oxidizing	ਤ	Strontium Oxide, SrO		0.0
.D.		2160	2380	i	Manganese Dioxide, Mr.	02	0.04
≈ ₩		2170	. 2400		Undetermined		0.8
=1/2\		2200	2425		Type of Ash ASME19	74 🖻	1 tumi nou:
luid .		2260	2515		Silica Value ASME19	74	77.4
					T250 Deg B&W		262
SINDABILITY IN	NDEX D409	***** @ **	**** t Moist.		Base/Acid Ratio ASME19	74	· 2 · U
SIND INDEX UN	CONDITIONED	***** @ **	**** * Moist.		15 Ash/mm BTU		
					16 SO2/mm BTU	•	1.6
REE SWELLING	endex D720	*****			Fouling Index ASME19	74	
sparent Specif	fic Gravity	of Coal Mod	4fc7123 +++##		Slagging Index ASME19	74	
						. • ·	
	NOIBCUIC DI						n.

Respectfully Submitted, Derland K. Wilburn

"The herizone, coining or interpretations contained in this states have been provided by the client"; single-client, are based upon experience of setting provided by the client and spreader the based programme of interpretation to a single-client provided by the setting of the interpretation of valuation, constant a based interpretation that provide the provided by the single-client and the priced, reserved bits provide." Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

ſ

ι

.

. .

APPENDIX B K-T ANALYSIS

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #**TABLE**-V-1 ORIGINAL K-T ANALYSIS MATRIX

•

OPTIONS			1		2		3		4		5		6		7	8		9		10		11		13		14	4		
																								·					
Coal						1 4 - -			L	.		τ.		Mon		Mont	0.001		rric	T	rrie	Mont	erev	Mont	erev	Tur	ris		
			urris India		terey		terey min	Mon	terey	Mon	inis torov		ms rrie						2B	PF	R	PE		Tu	ris	PR	₹B		
Daliman 31 & 32			IIIIS	<u> U</u> T	rris rris	יי דע	rris reio		terey rric				IIIS Ircie			۲۰۱ T u	rie		<u>28</u>	 	Turris PRB			PRB/	Turris	PR	<u>≀</u>		
Daliman 33			umis No		ms Io							I U N						 	Vas Vas		8	Ye Ye		Ye	es	Ye	es e		
		I			10				0	P		N		1	<u> </u>	- <u>1</u>	53												
FGD System																													
Dallman 31 & 32		A	dd	A	dd																								
Dallman 33		(Dn	0	Dn	C)n	C)n	C	Dn	C	Dn	((Off	0	'n	C	Off	C	<u>)n</u>	<u> </u>	n	0	<u>n</u>	0	<u>n</u>		
Potential Unit Modifications		N	one	A lime: feed s (LS	dd stone system 7&8)	A lime: feed s (LS	dd stone system 7&8)	Ad limes feed s (LS (Dall 31/	dd stone system 7&8) Iman (32)	A lime feed s (Dal 31	dd stone system Ilman /32)	No	one	A lime feed (LS 3 Mod	dd stone system 7&8) + 1 & 2	Ad limes feed s (LS 7 Mo	dd stone ystem &8) + d. 1	Modifi 1	ication & 2 Iman 2, 33)	Modifi 1 (Da 31/	ication aliman /32)	Ad limes feed s (LS 7 Mod.	dd stone system (&8) + 1 & 2	Ad limes feed s (LS 7 Mo	dd stone ystem &8) + d. 2	Modifie 1 8 (Dall Units 3	cation 2 2 man 31/32, 3)		
																											·		
MUSTS								+							<u> </u>				<u> </u>										
Maintain space for NOx controls to be added at a later date		Y	ïES	Y	ES	Y	ES	YI	ES	Y	ES	Y	ES	Y	ES	Y	ES	Y	YES		YES		YES		YES YES		 ES	S YES	
WANTS	Wgt	Score	Wt'd Score	Score	Wťď Score	Score	Wťd Score	Score	Wťd Score	Score	Wt'd Score	Score	Wťd Score	Score	Wt'd Score	Score	Wťd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wťd Score	Score	Wťď Score		
Minimize reliance on SO2 allowance market	40	9	360	10	400	3	120	5	200	4	160	2	80	8	320	7	280	7	280	9	360	10	400	6	240	8	320		
Minimize coal handling problems	20	10	200	9	180	9	180	7	140	8	160	10	200	2	40	3	60	2	40	4	80	2	40	4	80	2	40		
Ease of operation	7	9	63	8	56	9	63	6	42	6	42	10	70	4	28	2	14	5	35	4	28	3	21	2	_ 14	4	28		
																						<u> </u>		<u> </u>	_		 		
Reduction of air toxics to aid in meeting future regulatory requirements.	1	10	10	10	10	5	5	5	5	5	5	5	5	0	0	5	5	0	0	5	5	5	5	5	5	5	5		
Minimize congestion on the plant site	1	5	5	4	4	6	6	5	5	6	6	7	7	8	8	4	4	10	10	5	5	7	7	3	3	9	9		
Minimize vehicle traffic	1	8	8	8	8	9	9	9	9	9	9	10	10	7	7	6	6	7	7	6	6	5	5	6	6	5	5		
Minimal impact on boiler reliability	30	9	270	7	210	8	240	7	210	8	240	10	300	2	60	5	150	3	90	6	180	1	30 508	5	150 498	2	60		
			010		000		020				~~~					1					· · · ·			•					

•

•

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #ABLE*V-1a

FINAL K-T ANALYSIS MATRIX

Ceal Case Case <th< th=""><th>OPTIONS</th><th></th><th></th><th>1</th><th></th><th>2</th><th></th><th>3</th><th>4</th><th>4</th><th></th><th>5</th><th>(</th><th>3</th><th></th><th>7</th><th>8</th><th>3</th><th></th><th>9</th><th>1</th><th>0</th><th>1</th><th>1</th><th>1</th><th>3</th><th>1</th><th>4</th></th<>	OPTIONS			1		2		3	4	4		5	(3		7	8	3		9	1	0	1	1	1	3	1	4				
Laterale Unite Damma 34 S Turnis Monterey Turnis Turnis PR8 PR	Coal																															
Datima 31 & 3.2 Turnis PRB PRB Turnis PRB PRB Turnis PRB Turnis PRB Turnis PRB Turnis PRB Turnis PRB Turnis PRB PRB<	Lakeside Units		Tu	irris	Mon	terey	Mor	terey	Mon	terey	Tu	rris	Tu	rris	Mon	iterey	Mont	terey	Tu	rris	Tu	Turris Mor		terey	Mont	tere <u>y</u>	Tu	rris				
Deltana 33 Furnis Turnis Tur	Dallman 31 & 32		Tu	Irris —	Tu	rris	Τι	irris	Mon	terey	Mon	terey	Tu	rris	P	RB	PF	RΒ	Pl	₹B	PF	RB	PF	RB	Tu	rris	PI	RB				
Off-site Storage No No No No No Yes Yes Yes Yes	Dallman 33		Tu	ırris	Tu	rris	Τι	ırris	Tu	rris	Tu	rris 📜	Tu	rris	P	RB	Tu	rris	P	RΒ	Tu	rris	PF	۶B	PRB/	Turris	P	RB				
FGD System Add More Add Add Add More Add Add More More <td>Off-site Storage</td> <td></td> <td>N</td> <td>lo lo</td> <td>N</td> <td>lo</td> <td>1</td> <td>No O</td> <td>N</td> <td>lo</td> <td>N</td> <td>lo</td> <td>N</td> <td>lo</td> <td>Y</td> <td>'es</td> <td>Ye</td> <td>es</td> <td>Y</td> <td>es</td> <td>Ye</td> <td>əs</td> <td>Ye</td> <td>əs</td> <td>Y</td> <td>es</td> <td>Y</td> <td>es</td>	Off-site Storage		N	lo lo	N	lo	1	No O	N	lo	N	lo	N	lo	Y	'es	Ye	es	Y	es	Ye	əs	Ye	əs	Y	es	Y	es				
FGO System Image and S2 Add Modifications Add Modifications Add Modifications Add Add Modifications Modifications Modifications Modifications Modifications Modd Modi Modifications <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																																
Dailing 33 & 32 Dail Add Mode Iterations Mode Iterations Mode Add Add Add Add Iterations Mode Iterations	FGD System																															
Dailing 33 O On On <	Dallman 31 & 32		A	dd	A	dd							<u> </u>																			
Potential Unit Modification description of Mod. 1 & 2) Nome Add Imestone feed system (LS 7 & 8) Add Imestone (LS 7 & 8)	Dallman 33			Dn	C	n	(Dn	c)n	C	Dn	C)n	((Dff	c	n)ff	0)n	C)n	<u>_</u>	n	_ C	Dn				
Add (acceptional plane) Add (acceptio									· · · · · · · · · · · · · · · · · · ·																							
MUSTS VES VES <th< td=""><td>Potential Unit Modifications (see attached table for description of Mod. 1 & 2)</td><td></td><td>N</td><td>one</td><td>A limes feed s (LS</td><td>dd stone system 7&8)</td><td>A lime feed (LS</td><td>.dd stone system 7&8)</td><td>A lime: feed s (LS (Dal 31/</td><td>dd stone system 7&8) Iman /<u>32)</u></td><td>A limes feed s (Dal 31/</td><td>dd stone system Iman /32)</td><td>Nc</td><td>one</td><td>A lime feed (LS 1 Mod.</td><td>.dd stone system 7&8) + . 1 & 2</td><td>Ad limes feed s (LS 7 Mo</td><td>dd stone system '&8) + d. 1</td><td>Modif 1 (Dal 31/3</td><td colspan="2">Modification 1 & 2 (Dallman 31/32, 33) Modification 1 (Dallman 31/32)</td><td>Ad limes feed s (LS 7 Mod.</td><td colspan="2">Add Add imestone limestone ed system feed system LS 7&8) + (LS 7&8) - Mod. 1 & 2 Mod. 2</td><td colspan="2">\ddModifiestone1 8system(Dall7&8) +Units 3od. 233</td><td>ication & 2 Iman 31/32, 3)</td></th<>	Potential Unit Modifications (see attached table for description of Mod. 1 & 2)		N	one	A limes feed s (LS	dd stone system 7&8)	A lime feed (LS	.dd stone system 7&8)	A lime: feed s (LS (Dal 31/	dd stone system 7&8) Iman / <u>32)</u>	A limes feed s (Dal 31/	dd stone system Iman /32)	Nc	one	A lime feed (LS 1 Mod.	.dd stone system 7&8) + . 1 & 2	Ad limes feed s (LS 7 Mo	dd stone system '&8) + d. 1	Modif 1 (Dal 31/3	Modification 1 & 2 (Dallman 31/32, 33) Modification 1 (Dallman 31/32)		Ad limes feed s (LS 7 Mod.	Add Add imestone limestone ed system feed system LS 7&8) + (LS 7&8) - Mod. 1 & 2 Mod. 2		\ddModifiestone1 8system(Dall7&8) +Units 3od. 233		ication & 2 Iman 31/32, 3)					
MUSIS VES VES <th< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			_					 																								
Maintain space for NOX controls YES	MUSIS																															
Maintainagabe for NOX controls YES Y																					·											
WANTS Wg Score Wrd Score	Maintain space for NOx controls to be added at a later date	5	Y	ES	YI	ES	Y	ES	YI	ES	YI	ES	YI	ES	Y	ËS	YI	=S	Y	ES	YES		YES		YES		Yi	ES	YI	ES	Y	ES
WANTS Wrd Score																					<u> </u>											
Minimize reliance on SO2 allowance market* 40 8 320 10 400 2 80 8 320 6 240 0 0 9 360 9 360 7 280 7 280 10 400 3 120 8 320 Minimize coal handling problems 20 10 200 9 180 9 180 7 140 8 160 10 200 2 40 4 60 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 2 80 2 14 5 5 5 5 5 5 5 5 5	WANTS	Wgt	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wťd Score	Score	Wťd Score	Score	Wťd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score	Score	Wt'd Score				
Minimize reliance on SO2 40 8 320 10 400 2 80 8 320 6 240 0 9 360 7 280 7 280 10 400 3 120 8 320 Minimize coal handling problems 20 10 200 9 180 9 180 7 140 8 160 10 200 2 40 3 60 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 <td< td=""><td></td><td></td><td></td><td> </td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></td<>					<u> </u>																<u> </u>							<u> </u>				
Minimize coal handling problems 20 10 200 9 180 9 180 7 140 8 160 10 200 2 40 3 60 2 40 4 80 2 40 Ease of operation 7 9 63 8 56 9 63 6 42 6 42 10 70 4 28 2 14 5 35 4 28 3 21 2 14 4 28 Reduction of air toxics to aid in meeting future regulatory requirements. 1 10 10 10 5 <td< td=""><td>allowance market*</td><td>40</td><td>8</td><td>320</td><td>10</td><td>400</td><td>2</td><td>80</td><td>8</td><td>320</td><td>6</td><td>240</td><td>0</td><td>o</td><td>9</td><td>360</td><td>9</td><td>360</td><td>7</td><td>280</td><td>7</td><td>280</td><td>10</td><td>400</td><td>3</td><td>120</td><td>8</td><td>320</td></td<>	allowance market*	40	8	320	10	400	2	80	8	320	6	240	0	o	9	360	9	360	7	280	7	280	10	400	3	120	8	320				
Withing 2 cold handling 20 10 20 9 180 9 180 7 140 8 160 10 20 2 40 3 60 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 4 80 2 40 7 70 </td <td></td> <td>-</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		-		<u> </u>												
Ease of operation 7 9 63 8 56 9 63 6 42 6 42 10 70 4 28 2 14 5 35 4 28 3 21 2 14 4 28 Reduction of air toxics to aid in meeting future regulatory requirements. 1 10 10 10 5 5 5 5 5 5 0 0 5 5 5 5 5 5 5 5 5 5 5 0 0 5 <td>problems</td> <td>20</td> <td>10</td> <td>200</td> <td>9</td> <td>180</td> <td>9</td> <td>180</td> <td>7</td> <td>140</td> <td>8</td> <td>160</td> <td>10</td> <td>200</td> <td>2</td> <td>40</td> <td>3</td> <td>60</td> <td>2</td> <td>40</td> <td>4</td> <td>80</td> <td>2</td> <td>40</td> <td>4</td> <td>80</td> <td>2</td> <td>40</td>	problems	20	10	200	9	180	9	180	7	140	8	160	10	200	2	40	3	60	2	40	4	80	2	40	4	80	2	40				
Ease of operation 7 9 63 8 56 9 63 6 42 6 42 10 70 4 20 14 5 50 4 20 21 <th21< th=""> 21 21 <th21< th=""></th21<></th21<>	F		<u> </u>			60	<u> </u>	60	-	40	-	40	40	70	4		<u> </u>	14	5	25	1	28		21	2	14	4	28				
Reduction of air toxics to aid in meeting future regulatory requirements. 1 10 10 10 10 10 10 5 6 6 7 7 8 8 4 4 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <		1	9	03	<u> </u>	50	9	63	0	42	0	42		10		20	2	14	5	- 55	-	20		21	_							
Minimize congestion on the plant site 1 5 5 4 4 6 6 5 5 7 7 3 3 9 9 plant site -	Reduction of air toxics to aid in meeting future regulatory requirements.	1	10	10	10	10	5	5	5	5	5	5	5	5	0	0	5	5	o	0	5	5	5	5	5	5	5	5				
Image: Series of state 1 5 5 4 4 6 6 5 5 6 6 7 7 8 8 4 4 10 10 5 5 7 7 3 3 9 9 plant site	Minimize congestion on the																				-											
Minimize vehicle traffic 1 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 7 7 6 6 7 7 6 6 5 5 6 6 5	plant site	1	5	5	4	4	6	6	5	5	6	6	7	7	8	8	4	4	10	10	5	5	7	7	3	3	9	9				
Minimal impact on boiler 30 9 270 7 210 8 240 7 210 8 240 7 210 8 240 10 300 2 60 5 150 3 90 6 180 1 30 5 150 2 60 TOTAL - WANTS SCORE 100 876 868 583 731 702 592 503 599 462 584 508 378 467 *Revised based on calculated allowance purchase requirements. 4 4 4 4 4 4 4 4	Minimize vehicle traffic	1	8	8	8	8	9	9	9	9	9	9	10	10	7	7	6	6	7	7	6	6	5	5	6	6	5	5				
reliability 30 9 270 7 210 8 240 7 210 8 240 10 300 2 60 5 150 3 90 6 180 1 30 5 150 2 60 reliability 0 <	Minimal impact on boiler																			+	<u> </u>											
TOTAL - WANTS SCORE 100 876 868 583 731 702 592 503 599 462 584 508 378 467 *Revised based on calculated allowance purchase requirements.	reliability	30	9	270	7	210	8	240	7	210	8	240	10	300	2	60	5	150	3	90	6	180	1_	30	5	150	2	60				
*Revised based on calculated allowance purchase requirements.	TOTAL - WANTS SCORE	100		876		868	+	583		731		702		592		503	1	599		462		584		508		378		467				
	*Revised based on calculated a	allowan	ce purcha	ise requi	rements		+					· ·			1	+	1															

.

•

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

TABLE V-2 UNIT MODIFICATION REFERENCE SHEET

	Concern	General Description of Concern	Potentia	I Modification
		-	Modification 1	Modification 2
			Dallman 31/32	Dallman 33
1	FD Fan Capacity or Head	Increase in moisture decreases boiler	No Change	No Change
		efficiency, increasing both fuel and air	(1% cap. Incr.)	(1% cap, incr.)
		requirement. Moisture also increases		
		flue gas volume.		
2	ID Fan Capacity or Head	Same as FD Fan, plus an additional	n/a	No Change
	(Unit 33 only)	concern about increasing flue gas		(2% cap. Incr.)
		temperature with PRB if fumace is not		
	Cool Food on Concelling	adequately cleaned.		
1			Raise leveling bar.	Add electronic
P		emiciency will require an increase in		weign system &
	Cool Mill Consoity	Coal feed rate.	= 10	raise leveling bar.
-	(Unit 33 only)		n/a	
5	Exhauster Canacity	Same basis as coal Coal Feeder In		No Change
	or Head	addition PRB coal requires higher	11/4	(3 mills for MCR-
	(Unit 33 only)	PA/Fuel ratio, increasing both capacity		3 for Opt 13)
		and head requirements.		(Max head incr. of 24%.)
6	Coal Pipe Size	The increase in PA flow (See Exhausters) n/a	No Change
	(Unit 33 only)	increases coal pipe velocity.	11 1	(Velocity Increases
		Normally try for a maximum of 5000fpm.		to 5560 fpm.)
7	Mill Inerting	PRB coal requires mill inerting.	n/a	Add mill inerting.
	(Unit 33 only)			
8	Mill Wash Nozzles	PRB coal requires mill washing on	n/a	Add mill wash
	(Unit 33 only)	shutdown		nozzles.
9	Cyclone Modifications	PRB coal in a cyclone requires certain	Add split dampers,	n/a
	(Units 31/32 only)	cyclone modifications for successful	alternate (hot) PA	
		tinng.	source, & modulate	
10	Cuolono Slog Eluving Agon	Maniaray and requires the addition of	PA volume damper.	
10	Cyclone Slag Fluxing Agen	Imonterey coal requires the addition of	No Change	n/a
11	Bunker Inerting	DPB coal requires bunker in a fing	Add hunker inerting	Add bucker inerting
				Aut pulker merting.
12	Furnace Cleaning	PRB coal requires waterlances to clean	Add waterlances &	Add waterlances &
	/	furnace waterwalls.	pump skid.	pump skid
13	Ash Handling System	PRB coal ash solidifies when moistened.	Overdilute with	Overdilute with
		Wet conveying systems require special	water when pulling	water when pulling
ľ		treatment.	ash. Scour with	ash. Scour with
			bottom ash often.	bottom ash often.

Electronic Filing - Received, Clerk's Office, November 21, 2008 ***** PC #1 ****

Table V-3

Adjustment of K-T Analysis Scores for Reliance on SO₂ Allowance Market

Allowance Purchase	Normalized	Scaled	"Best = 10" Basis	Rounded Score	Score from 9/22/98 Meeting
4963	7596	1.91	8.09	8	9
-2422	211	0.05	9.95	10	10
29690	32323	8.14	1.86	2	3
7089	9722	2.45	7.55	8	5
14474	17107	4.31	5.69	6	4
37076	39709	10.00	0.00	0	2
3283	5916	1.49	8.51	9	8
1030	3663	0.92	9.08	9	7
10668	13301	3.35	6.65	7	7
8415	11048	2.78	7.22	7	9
-2632	1	0.00	10.00	10	10
26921	29554	7.44	2.56	3	6
4753	7386	1.86	8.14	8	8
	Allowance Purchase 4963 -2422 29690 7089 14474 37076 3283 1030 10668 8415 -2632 26921 4753	Allowance Normalized 4963 7596 -2422 211 29690 32323 7089 9722 14474 17107 37076 39709 3283 5916 1030 3663 10668 13301 8415 11048 -2632 1 26921 29554 4753 7386	Allowance PurchaseNormalizedScaled496375961.91-24222110.0529690323238.14708997222.4514474171074.31370763970910.00328359161.49103036630.9210668133013.358415110482.78-263210.0026921295547.44475373861.86	Allowance PurchaseNormalized ScaledScaled "Best = 10" Basis496375961.918.09-24222110.059.9529690323238.141.86708997222.457.5514474171074.315.69370763970910.000.00328359161.498.51103036630.929.0810668133013.356.658415110482.787.22-263210.0010.0026921295547.442.56475373861.868.14	Allowance PurchaseNormalizedScaled"Best = 10" BasisRounded Score496375961.918.098-24222110.059.951029690323238.141.862708997222.457.55814474171074.315.696370763970910.000.000328359161.498.519103036630.929.08910668133013.356.6578415110482.787.227-263210.0010.001026921295547.442.563475373861.868.148

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

• •

APPENDIX C DALLMAN UNIT 33 SO₂ REMOVAL IMPROVEMENTS

APPENDIX C DALLMAN UNIT 33 SO₂ REMOVAL IMPROVEMENTS

The basis for this study is the assumption that the Dallman Unit 33 FGD system can consistently achieve 90% SO₂ removal efficiency. However, it is desirable to obtain higher removal efficiency after the onset of Phase II on January 1, 2000. This appendix briefly addresses the alternatives for increasing the removal efficiency performance to 95%.

Options Available

There are several principal means of improving the removal efficiency of a wet limestone FGD system:

- 1. Increase the gas flow through the absorber (decrease the percent bypass)
- 2. Increase the liquid flow to the absorber (upgrade or add pumps) to increase the L/G ratio
- 3. Increase the gas/liquid contact by modifying the spray headers and/or the trays
- 4. Increase the liquid phase alkalinity by raising the operating pH or by adding organic acid.

Considerations for Dallman Unit 33

Implementation of any of the first three alternatives listed above would result in an increase in the pressure drop across the absorber towers. Review of data from recent FGD operator log sheets indicates that the booster fans typically operate up to their maximum capability at full load conditions. The indicated position of the fan inlet dampers commonly reaches 99 to 100% on a typical day. This indicates that the fans or motors would need to be modified to handle the increased power demand that would occur under the higher ΔP operation.

Review of the booster fan curves and the fan motor data indicates that the fans are designed for two speed operation but are now fitted with single speed motors operating at the "low" design speed for the fan. The cost to change out the motors to ones capable of the higher speed, higher power operation is estimated to be \$120,000 per fan, or \$240,000 total. This capital cost would be accompanied by a constant higher power consumption due to the increased absorber ΔP .

For about half this capital cost, and with no accompanying $\triangle P$ increase, an organic acid addition system could be added to enhance the liquid phase alkalinity and easily achieve 95% removal efficiency. The additive could be used only when needed. Experience at other FGD systems producing wallboard grade gypsum shows that the additive usage is compatible with this application. Acceptance of this technique for efficiency enhancement by the utility industry and the gypsum wallboard industry leads Burns & McDonnell to recommend it as the preferred alternative for use at Dallman Unit 33.
, 1

, |

7

APPENDIX D OFFSITE PRB COAL UNLOADING AND STORAGE OPTIONS

Electronic Filing - R	eceived, C	Clerk's Office,ber 21, 2008
* * * * *	PC #1 *_*	* * *
	PR	B
UNIT	33	
	70444944	
OFTIONS	7,9,11,13,14	
DESCRIPTION		
Pawnee Transportation	-	
Clear site		
Prepare pile base		
Runoff collection system	-	
Treatment bldg & equip.	-	
Runoff pond		
Improve access road		'
Improve site security		
TOTAL		<u> </u>
Curran Site		
Property (90 acre -		
\$5000/acre		
Site prep		
Rail loop	· · · · ·	
Rotary dumper		
Coal storage silos		
Truck loadout packages 3		
Truck scale		
Access roads		
Office/break building		
Tools/machinery		
Substation/switchgear,		
(Paurae cost items)	Clear site fo	
(Fawnee Cost items)		
TOTAL	system, trea	
	-	
Dallman Storage	 	
Clear site		
Prepare pile base		
Runoff collection system	-	
Treatment bldg & equin		
Rupoff pond	-	
Improve access road		
Improve site security		
Site prep	+ +	
New rail sidings	+ +	
Rotary dumper unloader	1 1	
Switch engine	+ +	
TOTAL		

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * PC **FOST ESTIMATE PRB Coal Storage Alternatives**

Options 7,8,9,10,11,13,14

		DALLMAN			TOTAL	
UNIT	33	32	31	8	7	
OPTIONS	7,9,11,13,14	7, 8, 9, 1	0, 11, 14	NO	NE	+
DESCRIPTION						↑
						†
Pawnee Transportation						
Clear site						\$100,000
Prepare pile base					1	\$100,000
Runoff collection system						\$10,000
Treatment bldg & equip.						\$50,000
Runoff pond					<u> </u>	\$20,000
Improve access road				T		\$0
Improve site security						\$0
				-		
TOTAL					-	\$280,000
						+200,000
Curran Site			-	+		<u>+</u>
Property (90 acre -				+		+
\$5000/acre						\$450,000
Site prep						\$220,000
Rail loop						\$1,700,000
Rotary dumper						\$10,000,000
Coal storage silos						\$3,500,000
Truck loadout packages 3						\$300,000
Truck scale					-	\$120,000
Access roads						\$50,000
Office/break building						\$150,000
Tools/machinery					t	\$50,000
Substation/switchgear,						400,000
MCC, utilities						\$200,000
(Pawnee cost items)	(Clear site for t	ruck loading, p	repare coal pil	e base, runoff o	ollection	\$280,000
	system, treatr	nent bldg, rund	off pond)			
TOTAL						\$17.020.000
				1		
Dallman Storage						
Clear site			-			\$100.000
Prepare pile base						\$100,000
Runoff collection system	1		[\$10,000
Treatment bldg & equip.	-					\$50,000
Runoff pond	:					\$20,000
Improve access road						\$30,000
Improve site security						\$60,000
Site prep						\$100,000
New rail sidings						\$800.000
Rotary dumper unloader				-		\$10,000,000
Switch engine						\$400.000
TÖTAL			-			\$11,670,000

7

APPENDIX E COST ESTIMATES

	¥			TUN		13.71	13.61	19.0	18.31	10,96	15,13								t NOU 4	
	R			OTAL AN	ACIMATE 1	50,804	17,006	20,052	15,309	20.051	48.212					ſ			le le	
	ŀ			<u>.</u>	6	0 14 10	0.32 7.5	0.23	1.55 2.4	5.20 2.E	0.41 30.			╞	╞					H
	₹		ANGE			ļ	Í	Ŷ	•	•	ľ									
	H		ALLOW		55	66,050)	45,042)	05,330)	90,372	15,220	92,563				ŀ	┢	Γ			Η
	F		a	-		1) 00	0	17 (1	53	70	72 9									_
	₽¥		IN TWN	AND O A	21 1940	13	10.	16.	13.	11	14,	_								
	ł		DTAL ANI	MPTTAL	8 *	7,020,003	7,302,837	7,435,642	1,810.037	1,611,430	5,433,649							ŀ		
			*	4		1 710.1	9,933	2,495	•	•	0.477 3	-		┢╴	╞	╞	╞	╞	$\left \right $	Η
	AF			101	*	2.83	44	28			4,40									
	ą		FICATICI	DAL	oleke •	0	o	•	•	0	0									Π
	╞		Dom 40		2	•	•	0	0	0	0	_	╞	╞	-	ļ	╞	$\left \right $		Η
	¥		SPECTS	BOILIN	1902															
	9		1980	AUDe	9	333,552	130,496	134,010	-		990'60	Tons	E	111.154		ŀ	ŀ	ſ		Η
	Ĺ		ELA TBI	140	4	R	3	1			3	Und 33	Gypsu	3						
	¥		IN THE OF	iliden vo		3,171,5	916,42	921,51			5.000.54	d 33 Tone	anstorre.	50.05						
	ŀ		11 (11)	A NDL	0 1900	•	5.031	5.431	0	ò	1.682	5	5		┢	┢	+-	┢	$\left \right $	
	2		ANALAL	HEDITICA	S THINK		1.06	1.06			2,13									
	~			11	•	•	000°E	000°E	•	D	0'000	-	╞	-	ŀ	t	T	T	Γ	
	ľ		SICIL	2	2	•	0 12,22	0 12,22	0		0 24.45	_	_	L	┞	╞	-	╞		_
	×		COLICY	3	HUMBLIN															
	w		AT OF A	NS.		•	•	0	0	0	D		-	ſ	ŀ	ſ	ſ	ſ	ſ	-
	F		PIN G	Da Xa			8	8			00	_	_		╞		\vdash	L		
	>		3				12,228.0	12,229,0			24,450,0									
alysia	P			UE	-	915.061	112.574	CS0.042	110.937	111.430	123.508			Γ	ľ					Π
V-4a omic Ar	┞		L L	5	5 E	5 14.	5	12 12	1.1	1 .1	15 28.1	┝		╞	┝	╞	╞	╞		Н
Table 1 Econ			E.			- 00	1.0	1.0	1.0	1.0	00 1.0	Ĺ		╞	┞	┞	Ļ	Ļ	L	
Option	ŝ		1971			522	\$ 22.0	\$22.0	\$22.0	322.0	\$22.0		_		_			L	L	
Ū	ď			CWANCE	E-MCE	545	729	527	(2,992)	(4,076)	(1,963)									
	┝				r S	169	68	121	53 0 -	. 961	192 .	_		┞	┝	\vdash	-			Н
	σ	1871		TOCAT	NNOT	5	-1	1.	3.	Ť	12.(
			MS 050	٥ ١		4,320	010	990	5,581	115'E	7,055	2,012	4,963	9,10%			\vdash		-	÷
	┝		CI CI			70	70	70	70	70		•	***		-	Ļ	ŀ	_	_	
	0			CEMI		1,13	1,13	1.13	1,13	1.13										
	z		NAIDO	30t	1 200	3,799	139	748	4,804	4,850	15,000	(000000)								
				2	2 2 2	5610	2805	2805	5095	6095	0886	000400000			╞	\vdash				-
	# _		N N	UN		•	4 0	4	2	4 5	1								_	
	-			ž	GRPCY	90.09	95.01	95.01	0,0	0,0		Abothit								
	¥		₹ď	PL -		5 6095	5.6095	5,8095	5.6005	S.8095		by weather;								-
	╞				- 3 5 -	50	70	8	*	0%	_	P 505 A	n feuer	N. HEVOD	_				_	-
	Ļ		-		2 #	3.1	3.1	83 3.1	1 .1	34 31	50,	N.S.		IBUT OF				A.	0	_
	~		TOT	ē i	natie Bitterie	\$4 5,0	2 5 0,3	253,5	3	62.3	1.314.7						d by Type	Montei		
	Ŧ		20	HEATING		10,500	10,500	10,500	10,500	10,500							eme Burne	PRB		
	5		E S			eltro.	ELLA	i El	ŝ	umis							Annual To	Lumia L	11,705 (
	Ľ		9	3	4 4	188 T	73 T	⊢ 8	8	193 T	104							-	-	-
	Ľ				Laina Laina	13,345.	5,260,	5,333,0	172	1,729,6	27,606.8	_								
	ш		5		H	11,045	11,452	11,596	13, 199	13.159	11,461									
	0	¥,			¥ Š	228.400	459.900	159,900	131,400	131,400	409,000									
	-	MD POV E STUD			TOR	0.0% 1.	0.0X	,0%	NO.0	0.0%)	1.4% 2.	-								-
		PLANC			W PAG	175 &	12	2	8	8	365		-						_	-
	F	VATER, E II COM									200		-							-
	Ľ	PHAS PHAS			Ē	Dellera	Dellime	THE REAL		Market	TOTAL									
	r I	~ ~ ~ ~ ~	00	el:	12	2	21	₽	₽ŀ	≏I	=	희	នៅ	5	នៅ	2	3	3	۶ĺ	2

	13.5 13.7 13.75 15.87 17.48 15.87
	TOTAL FORMULA 84 84 905.844 905.844 905.844
	22223
70	
	KLLD KR 11 11 11 11 11 11 11 11 11 1
	855588
	TUDTA CAN 2.4.14 7.2023.00 7.2023.01 2.227.11 2.227.4.75 6.274.75
	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1004 101 111 111 111 111 111 111 111 111
	000mm000 0010mm00 0010mm0 0010000 00100000000 0010000000000
	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
	6 11 11 12 12 12 12 12 12 12 12 12 12 12
	79/64/84 Uliate R 4 CCORF 4 CCORF 4 CCORF 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	8 8 8 9 0 5 5 8 8 1
	9004122 9104122 91042 91042 91427 91427
	2 2 3 3
	1011 112250 46.5 46.5 46.5 46.5
	1011 1011 1011 1011 1011 1011 1011 101
	§ °] 8 _ ∞ ∞ ∞ ∞ ∞ 0
	BOR ST
	C.C.A.BHT Libert 23,000 54,000 54,000
aiysis	
4 4 4 1 1 1 1	Tutt. 2011 14,14 5,517 5,517 2,519 2,205 0 2,205 0 2,205 0 2,205 0 2,205 0 2,205 0 2,205 0 1 2,205 0 1 2,205 0 2,205 0 2,205 0 2,205 1 2,005 1 4,005 1 2,005 1 4,005 1 2,005 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 1 2,005 10 1 2,005 1 2,00 1 2,00 1 2,00 1 2,00 1 2,00 2,00
Econo	
ption 2	······································
ō	2 2 2 4 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2
	60 11 12 12 12 12 12 12 12 12 12 12 12 12
1.1	11,000 11,000
	1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
1.0	
	40, Exactor 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
	11111111111111111111111111111111111111
	FUEL 110% 110% 110% 110% 110% 110% 110%
	10734 10734 10735 107555 1075555 1075555 1075555 1075555 1075555 1075555 1075555 10
	AL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	A Contract of the contract of
	10100 10000 1000000
2	「「「「「「」」」 第二章 2000 2000 111 -
No.	Net Net 1,228,40 1,228,40 4,59,90 1,31,40 1,31,40 2,409,40 2,409,40
A UN P	CAUD COND 40.0% 70.0% 71.4%
TION	177 175 175 186 186 186 186
ATA L	
	51111

_ . . .

- .

- . --

- - -

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *

128,063	0 40,00) 15,901 15,853	Solucione	
2,967.029	2,836,047 46,306 46,912 15,950	TOTAL	
15.510,5 51	17,250,983 6,861,998 6,940,597 4,224,843 2,222,120	Total State	
14,74	14,07 15,10 15,26	ANNA SANA	
1,417,716	(149,259) 99,132 (141,270) 77,822	12 de la constante	
Q, 50	-1.04 -1.74 0.16		
34,021,287	(7.001,125 7,661,330 7,796,287 2,007,573 2,209,951	ENTINUE LAUNUE	
15.33	13.03 16,60 15,80 17,30	NUAL SOCIET NUM	

-

Electronic Filing - Received, Clerk's	<u>Office, November 21, 2008</u>
<u>*****</u> PC #1 * * * *	

-

-

|--|

Table V-4e Option & Economic Analysis

--- -

-

- -

.

Electronic Filing - Received, Clerk's Office, November 21, 2008

ļ						CITY N	
l	35 5 5 5 5 5 5				53 588223	T SOLA	
	100% 100% 100% 100% 100%				10.09 10.09 10.09 10.09 10.09 10.09 10.09	TANCE SID	
1	111,400 111,400	*1			NET Net 1 226,400 439,900 439,900 131,400 131,400 131,400	- November 1997	
		and the second se			401 11,100 11,10	1000	
	2011 222 2016 2017 2017 2017 2017 2017 2017 2017 2017				1074) 10.7217 13.77221 5.344.610 5.422.221 1.735.679 1.735.679 1.735.629 26.022.211		
Annual Ton Tunis 645,028	COAL COAL University Funts Frank PRB PRB PRB PRB PRB PRB	2 A.		Annual Tunte D	Annual State		
Burned by 1 PR5 N 643,393	Coat WATER 10,500 10,200 10,200 10,200			fone Byrned PAB 1,445,530	1000 E		
Type fonterey 109,410	107.511 107.51			by Type Monterey 151.410	102.211 212.215 212.11		
				Vidigent.	Successor		
				4 30, mine			
					9999999		
l							
	P)146 944 944 944 944 944 944 944 149 2,247 2,247 2,247 2,247 2,247 2,247 2,247 1,612 1,612 1,612				405 403 503 7085 ** 5,78 5,78 5,78 5,78 5,78 5,78 5,78 5,78		
	52248 843 1000 1000 1000 1000 1000 1000 1000 10			21.35%	Class Based Tomas 1012 1112 1112 1112 1112 1112 1112 111	10-1227	
	LLOCATED 5.18 1.35 1.41 1.2.92		Ī				
					100 100 100 100 100 100 100 100 100 100		
					(1.402) (1.402) (1.403) (1.210) (1.210) (1.210)		
		Option 8				Optio	
	Files 14, 1905 7, 752,25 1, 1915 2, 2650,0 24, 197, 25 24, 197, 25	Table V.4 Economi				n 7 Econo	Tahle
		c Analysi				v-40 mic Anab	
				-	GAPTAL	reia	
					110,000 1	1957	
	CATIONE NUC TO T				45,000 46,000 46,000 46,000		
	55,000 51,000			111	TTP744 TTP744 4.502 011 1.241 241 4.500 44.500		
	2012 2012 2012 2012 2012 2012 2012 2012				100 100 100 100 100 100 100 100 100 100		
	ELERIT VELA Coult could Coult could Could could Could could Could could Could could could Could could could could Could could			Unit 33 To Untestane			
	111 111 111 111 111 111 111 111			aj Distriction dypeum dypeum			
ļ		- 1975 - 19		0 0			
	22127 22127 2010 2017 2017 2017 2017 201	seed. A			940730F 9418 3087 3087 3087 102,327 102,327 102,327 0 0 0 0		
{	15.845 31.74				31.74 11.151 11.151 11.151 11.151		
	TCTAL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				8 3 5 5 5 5 5 5 6 7 7		
	FOTAL EXPR 17,250, pc 17,250, pc						
ļ					10 10 10 10 10 10 10 10 10 10 10 10 10 1		
		· ·					
	ALL CANAN EXP BLACK STOR TO TO 1107, 245 1107,						
	TOTAL 41 4.40,007 1.400,729 1.400,729 1.400,729 1.400,922 1.500,922 1.500,922	5			100,101 100,100 100,100,		
	12.53 14.020 15.021 15.021 15.021 15.021 15.021						

	Analysis
Teble V-4	Econamic
	Option 9

		ñ	3	ŧ	3	8	2	٦			
	<u>;</u> 51	1	=	Ż	Í	Ē	12				
		53	2	쐶	8	5	37				
	ĔĮ.	21,108,7	9,555,0	1.482.1	2,413.3	2,020,6	12,964.7				
		50	C#:0	0.53	4.50	9 20	0, 1)g				
	BNINK I	,	2	4	29	8	N				
	a e a e e	260,64	107,24	212,09	70,942	115 21	2,133,51				
		16.98	17.70	17.92	13.03	13.79	16.95				
	ana in	ſ	~	-	~	-					
	1900 IVTVL	Ē	2	12	11	8	85				
		1.928.01	0,136,5	0.240,0	1,116,9	1,111,1	1.525.04				
	4	1.512	9,929	7.3Z7	۰	•	0.766				
	10TA	2	1	1			871				
	PCAROS AL	•	•	•	•	•	•				
					_	~					
	tin te	160.512	159,929	102,327	°	°	870,768				
		0	-							0	
	ARTINI MININAN DOMELINI						ĺ	33 Tone	E Pi		
	E open							i Chi	gyp.	•	
	A CONTRACTOR	000000000000000000000000000000000000000						ii 33 Ton	Netone		
	8 8 8 8 8 9	154	ŝ	2	•	•	ŝ	5	Ľ,		
	MALALA CIPICAT	101	Ĩ	197.			194.				
	233	31	92	5	•	Ð	025				
	FOTA	4.592.0	2.253.2	2,267.3			9,112,6				
	ACKERS PERSON	82.031	10.270	02,369	•	Ð	72,670				
	ADD A	••	0 1.6	0,1			0 7,8				
	COST O	410.00	365.00	205.00		-	1 140,00				
	APTAL	8					000				
		100					ğ				
	# 8-	139.251	752 205	130.051	16,937	611,430	169,903				
		19.6	12		-	-	39.		1		
		57.1		1.15	1.05	1.05	1.40				
	222	212	124.25	52.125	8.Z	\$21.00	\$24.02				
	ž v	1.4035	(998)	210)		1.078)	1,644)				
	No.	-	-	-	, 1	. 2	Ē				
		5 149		1.377	2,530	1.420	2,002				
	ILOCA	2 A A A					ſ				
	19.8	0.572	2.355	2.987	5,331	5,514	2.760	260'E	10,666	4.97%	
		0	2	2	9	6	ľ	- 20			
		1137	1.137	1.137	1.137	1.137		Solution Solution			
	49.5	5.780	2.247	2.270	18.4	4.850	20,018		Ø		
					17	jû.	54	10000			
	an a	0.839	0.139	0.639	5.609	9,600	1.429	1000000			
	, t.	10	6	Xo	20%	20		10000 M	I	1	
	8 3		. 6					Alfantin		H LOOD	
	is și	0.394	AGC6.0	1008.0	5.6095	5.6095		(Division in the		THE SOL	
		7.4	**	Ĩ.	10	5		A 202 A	LE HAL	L moo	
	2.	0	10	0.0	1	1.5	\$	N.S			<u>ہ</u>
		22.2	319.07	323.71	62,58	52.33	1,630,55				r Type Montere
	3895	540.0	170.0	175	0.900	0.500					Numed by RB 5,830
	225				-	-					al Tone B P.
	AND	PRB		PRB	Pirete	E L					Annu Tuma 164.95
		112		1	970	1993	1750				
	Ĕ.	444 11	5.364		PACT I	2	28,012				
	s s s e e	11 200		11.790	13,190	11.159	11,626				
¥.	51	007.00	10.900	000	11.400	11.400	000.61				
2 è	× *	N I N			7	-	* 2.4				
AT AN	8	NUMPS OF	10.02	10.01	50.0	50.05	F				
A LIG	 1	176		2	8	8	992 1992				
	;	1000000						ſ			
I SI 🖁	1						EOTA I				

Electronic Filing - Received, Clerk's Office, November 21, 2008 * * * * * PC #1 * * * *	

		. 5 3	13,93 10,48	16.80	10.90	16.30		ļ	٦		
		rat annaux Luarro Co		564	151	591					
		21.	11,061,1	1,040,1	2620	34,206,4					
		UNCE Diffure E PER	1.0	0.53	0.20	0.70					
		ALDA ECTER	(109,659) 197,245	242,097	615,220	1,613,077					١
		<u> </u>	18.05	10.27	13.73	15.80					
		UMA 1803 18 DE UNA LE									
		TOTAL A CANTA	7,250.985 0,202,484	6.403.917	1,811,430	17,505.8ZZ					
		. 5	1 110,047	92.327	• •	20.303 3					l
		LTON U TO	2 0 0 0	•		0 3.2					
		t Machine Materia									۱
		FRECTS OF	0 629.051	720,291		362,25 8					
		NO COSTE GM I	295,41			1,552	Sub		11,184 <u>[</u>		
		1000000	5			*	junii 33 T	Gypeum	11 io		
		AST VEAN GRUENEE DAM COST	3,171,50			3.171,59(nt 33 Tons	in a number of the second	50.95		
		ALLER F	122.331	161.57 9	• •	944,250	ž	<u>5</u> .			
	,	ANRUA MODELL				Ű					
		TOTAL	7,550,000	4,147,285		10,630.472					ļ
		DIFFEATION COAL AMBLIAIO	2.550,000 5.708,117	3,702,205	• •	0,100,472					
		ALT OF MO	0 000.59	000 119	••	1 000,00					
		NPTTAL 00	A	a		0					
c Analys		Scene									
conomic		g is -	14,190,011	7, 350,08	1.616,916,1	127'IZ1'CC					
tion 10 E		AFR FREE FREE FREE	20,1 20,1	9	8 8	1.20					
ő		A Rest	925.00 924 25	\$24.25	12 8 12 8	923.00					
		OWNIKE	6+8 (992)	(015.1)	(2,9 97) (4,078)	(\$.415)					
		ED ALL	, 169 560	377	505. \$04,	260					
		NUD		_		2					
		DENIS BULKID BULKIDUK TONIS	4,320	2,307	5,531	20,407	12,082	6,413	41.04%		
		;;)	1.1370	1.1370	0221.1	T					
			3,796	2,276	1987 1987	15,03E	000000				
		* 3 * # 2 # 2	5610	1958	6095 60165	2002					
		분위 올 알록	00 X X	ž		ſ	1.00000000		ded		
		ı şş	0.06				- A Ricklick				
		s s s s s	909;5 9(2)	0.839	5.609		Z X (Idwinia	Ten or	N. OF KI		
			3.10%	ATC.0	3.10%		CALL DO	Aper There	Additions		
		TOTAL TOTAL TOTAL	643,028 319,678	323,715	900 C	1.453.347				y Type Monterey	>
		DOAL HEATHOR WALLIN PTURE	10,500	E78.6	10,500					PRE PRE	
		NOR NOR N NOR N N	Page Page							Annual Tol Turtis	106 200
			5,546	Ĩ,	1001	9966				-	
		Þ.	13,51 13,54 143 25 25	24'5 08	22 · 22	34 27,78					
		¥9368	000	11.7	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.5					
	YOUT	Į Į	× 1,224.	1.654	55	N 2,409,6					
	CHT ANE	1	5 60.0	10.01	50.0	71.44					
	Ater U II COMP	<u> </u>	21 E	2	a B RS	305	H				
	PHASE PHASE	j.	Current of	Definition		TOTAL					

-

- . -

Option 11 Economic Analysis Sub. Sec. Currat.cost 01 excepts. Fisual press Analysis Sub. Sec. Currat.cost 01 excepts. Fisual press Annu.uuts press Annuts press Annu.uuts press Annut
1947115 21.0 (194.62) (10.1 (197.64) (10.1 (197.64) (197.

•

	5
	-
Ē	-
3	ł
붊	2
P	ľ
	Ż
	ŝ

		J ž ž	10.41	1	11.2	10.40	18.44						
		L ANNUS ATED CC		.	ŋ	-	~						
		NICE .	2,573.83	50,235,62	2,415,30	2,020,651	4,433,41						
			-0.74 2	0.43	155	6.20	0,39						
		L Control	365)	245	224	520	200						
		a s g é é	206)	197	242	015	150.1						
		AL AND	19.14	02.71	13.62	13.70	14.05						
		LIAL ANU	79,194	30,564	40,055 10,037	11.430	13,23 2						
		53 	17 23.4	21 C		0	13 43.41						
		- Teler -	3,145,30	169,92	E'201	-	3,527,56						
		ACKHO I	•	••			•						
		OF MOO											
		EFECTS COLLER COLLER COLLER	444.512	188.929	122,291		670,769						
		180 81	748	•	•		P# 6	22		916			
		HE THE	3				('09 10	inh 33 To	modify	ŝ,			,
		NEAR DI BABER	145,70				11,544	Tome U	0	696.9			
		FIRET STORE	2				2.7	Liunk 33	Limesto				
		DALER FIGATION	391,036	196,450	100'/61	. 0	785,766						
		NNN NOM	1	p .									
		101	4,492,03	72,262,5	00,107,1		2,012.871						
		ercamo cut pues	12,031	166,270	001'204	0	010'EL						
		04 M00	0.4	11 00	- -	•	00 7.6						
		IL COFT	410,0	366.0	n'aor		1.140.0						
		CANT					0						
nalyeis		5	151	202	100	8	03						
omic A		28-	19.030.2	7,752,2	1.010.1	1,811,4	39,169,9						
4 Econ		Rug Rug Firm	1,44	144	1.04	1.045	1.395						
ption 1		SIES	24.25	24.25	22.00	121.00	124.02						
Q	and the second		512	(998)	(012	070)	733) 1						
		-	ľ		- 6	ť	3						
			5,109	1,589	2,530	1,430	12.092						
		ALLOC				-							
		CEMB NAMED NO. TON -	610	2,36	106.6	3.314	18,845	12,093	4,753	28.22			
			1.1370	1,1370	0121	1.1370	H						
		0 4 2 1 1 1 1 1 1	37	747	19	650	815						
				N A	-	*	14.	States States					
		194 194 1951	0,0630	1953.0	56093	5,0095	1.0577						
	and the second		0.0%	0.0	10.0	0.0%		i (en					ĺ
		¥ 10	2	2 3	19	2		Del Ande		-			
			10.03	0.00	5.600	5.60		Cultomer					Í
		9	0.37%	0.37%	3.10%	3.10%		NL2 AD.					ļ
			2.237	1715	2,500	2,338	0,356	<u>6</u>	\$.ŝ	8	derey A	ļ
		78 me	75 27	10 SZ	8	* 8	1,03				Ned by Ty	Š,	
		COA HEATI VALUE ETUR	5		10.5	10,5					Tons Bum	PRB 1	
					Turria	Turtis					Annual	Turtis 10.4 B24	
		45	2	221	1	10	.750						
		5	0 13.77	3 5,35	1.73	1.72	20,012						ļ
		W S S S S S S S S S S S S S S S S S S S	11.23	11.790	13,19	13,15	11,03						
		١	221,000	459,900	131,400	131,40D	2.409,000						l
	AD PO	¥ ř	80'0%	70.0X	\$0.0%	\$0.0M							
	PLIANC	5 S 5 S	<u> </u>	2 2	8	8	202						
	VA TER	y s											
	CETY 4	ŝ		Calman -	Laborated	the found	Teroi						I

Electronic Filing - Received, Clerk's Office, November 21, 2008 **** PC #1 **** FGD System Cost Estimate Dallman Units 31 & 32

ltern		TOTAL INSTALLED COST (1998\$)
		`
317LMN Shell		\$1,846,500
		\$215,250
		\$209,500
M.E. Spray Headers (31/LMN)		\$135,000
Recycle Spray Headers (317LMN)		\$350,300
		\$77,900
2. Absorber Outlet Elbows (C.S.)	r M	\$189,000
3. Absorber Outlet Elbows & Ducts (C276 W	allpaper)	\$505,000
4. Absorber Agrators		\$307,000
5. Pumps		
Reagent Feed Pumps		\$32,000
		\$1,200,000
Siurry Bleed Pumps		\$24,000
By-product I ransfer pumps		\$54,000
Return vyater Pumps		\$28,000
Mist Eliminator Wash Pumps		\$32,000
Absorber Area Sump Pumps		\$72,000
O. I ANKS		
M.E. VVasn Tank		\$35,000
By-product Transfer Tank		\$40,000
7. Recycle Pump Suction Valves		\$262,500
		\$28,000
9. Piping		A400.000
Reagent reed riping (rRP)		2130,000
Recycle Piping (FRP)		\$800,000
Siurry bleed Fiping (FRF) Mist Eliminater Mash Biping (EBB)		\$30,000 \$15,000
Nist Enhnator Wash Fiping (FRF)		\$ 10,000 665,000
By-product transfer Fiping (FRF) Beture Mater Dising (FBB)		\$00,000 \$75,000
Sump Bump Bining (FRP)		\$75,000 \$75,000
Compressed Air Piping (FRF)		\$20,000 \$75,000
Eire Protection Mater Dining		\$75,000 \$90,000
Ovidetion Air Dining		\$80,000 \$185.000
10 Valves for Above Systems		\$375.000
11 By-product Hydroclones		000,000
		000,000
12. Booster Fans		\$1,000,000
Fen foundations		\$42,000
Oxidation Air Compressors		\$330,000
14. Elevator		\$100,000
15. Instruments & Controls		\$1,000,000
16. Electrical (10%)		\$1,600,000
17. Civil		\$500,000
18. Chimney		
Existing stack liner lining		\$1,975,000
Column modifications		\$100,000
19. Absorber building		\$850,000
Building foundations		\$278,500
20. Ductwork		\$1,226,900
Foundations		\$150,800
Demolition of existing		\$183,900
21. Dampers		\$540,000
22. Pipe rack to 33 FGD system		\$227,700
23. Ball Mill w/ball charge, weigh feeder		\$1,387,500
	TOTAL	\$19,071,250
Engineering (8%)		\$1,525,700
Contingency (20%)		\$3,814,250

	GRAND JUIAL	324,411,200
	⊅/r\v¥	20102

fgdCOST.XLS

÷.

	TOTAL
OPTION 1	
Daliman 33	\$ 0
Daliman 32	\$ 0
Daliman 31	\$0
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 2	
Daliman 33	\$0
Daliman 32	\$ 0
Dallman 31	\$0
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 3	
Dallman 33	\$0
Dallman 32	\$0
Dallman 31	\$0
Lakeside 8	\$ 0
Lakeside 7	\$0
OPTION 4	
Daliman 33	\$0
Daliman 32	\$0
Dallman 31	\$0
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 5	
Dallman 33	\$0
Daliman 32	\$0
Dallman 31	\$0
Lakeside 8	\$0
Lakeside 7	\$0
Dallman 33	\$0
Daliman 32	\$0
Daliman 31	\$O
Lakeside 8	\$ 0
Lakeside 7	\$0
OPTION 7	
Dallman 33	\$410,000
Daliman 32	\$365,000
Dallman 31	\$365,000
Lakeside 8	\$0
Lakeside 7	\$ 0

COST ESTIMATE SUMMARY

COST ESTIMATE SUMMARY

Unit Modifications

UNIT	TOTAL
OPTION 8	
Dallman 33	\$0
Dallman 32	\$365,000
Daliman 31	\$365,000
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 9	
Dallman 33	\$410,000
Dallman 32	\$365,000
Dallman 31	\$365,000
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 10	
Daliman 33	\$0
Daliman 32	\$365,000
Dallman 31	\$365,000
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 11	
Dallman 33	\$410,000
Dallman 32	\$365,000
Daliman 31	\$365,000
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 13	
Daliman 33	\$410,000
Daliman 32	\$0
Daliman 31	\$0
Lakeside 8	\$0
Lakeside 7	\$0
OPTION 14	
Daliman 33	\$410,000
Daliman 32	\$365,000
Dallman 31	\$365,000
Lakeside 8	\$0
Lakeside 7	\$0

COST ESTIMATE

UNIT MODIFICATIONS

Options 7,8,9,10,11,13,14

		DALLMAN	LAKESIDE	TOTAL	
UNIT	33	32	31	8 7	
OPTIONS	7,9,11,13,14	7,8,9,1	0,11,14	NONE	
DESCRIPTION	MOD 2	MOD 1	MOD 1		
Modification 1					
Raise coal feeder leveling bar		\$15,000	\$15,000		\$30,000
Cyclone					
Split dampers		\$5,000	\$5,000		\$10,000
Alternate (hot) PA source		\$25,000	\$25,000		\$50,000
Modulating PA volume damper		\$20,000	\$20,000		\$40,000
Add coal bunker inerting		\$100,000	\$100,000		\$200,000
Furnace - add waterlances and pump					
skid		\$200,000	\$200,000		\$400,000
Modification 2					
Add electronic coal feeder weigh					
system & raise feeder leveling bar	\$80,000				\$80,000
Upgrade exhausters (4)	\$60,000				
Add mill inerting	\$200,000		-		\$200,000
Add mill wash nozzles	\$70,000				\$70,000
Add coal bunker inerting	\$240,000				\$240,000
Furnace - add waterlances and pump					
skid	\$800,000				\$800,000
			•		\$0
					\$0
					\$0
TOTALS	\$410,000	\$365,000	\$365,000		\$1,080,000
Option	7,9,11,14	8, 10	13		
Daliman 33	\$410.000	\$0	\$410.000		
Dallman 32	\$365,000	\$365,000	\$0		
Dallman 31	\$365.000	\$365.000	\$0		
Lakeside 8	\$0	\$0	\$0		
Lakeside 7	\$0	\$0	\$0		

COST ESTIMATE SUMMARY

Coal Handling Modifications

	Limestone	Two-coal	PRB Coal	Crusher	Off-site	TOTAL
UNIT	Addition	Piles	Handling	Upgrade	Storage	TOTAL
OPTION 1						
Dallman 33						\$0
Dallman 32						\$0
Dallman 31						\$0
Lakeside 8						\$0
Lakeside 7						\$0
OPTION 2						
Dallman 33	\$0					\$ 0
Dallman 32	\$0					\$0
Daliman 31	\$0					\$ 0
Lakeside 8	\$46,500					\$46,500
Lakeside 7	\$46,500					\$46,500
OPTION 3						
Dallman 33	\$0					\$ 0
Daliman 32	\$0					\$0
Daliman 31	\$0					\$0
Lakeside 8	\$46,500					\$46,500
Lakeside 7	\$46,500					\$46,500
OPTION 4						
Dallman 33	\$0	\$2,550,000				\$2,550,000
Dallman 32	\$46,500	\$1,275,000				\$1 ,321,500
Dailman 31	\$46,500	\$1,275,000				\$1,321,500
Lakeside 8	\$61,000	\$0				\$61,00 0
Lakeside 7	\$61,000	\$0				\$61,000
OPTION 5						
Dallman 33	\$0	\$2,550,000				\$2,550,000
Daliman 32	\$46,500	\$1,275,000				\$1,321,500
Dallman 31	\$46,500	\$1,275,000				\$1,321,500
Lakeside 8	\$0	\$ 0				\$0
Lakeside 7	\$0	\$ 0				\$0
OPTION 6						
Daliman 33						\$0
Dallman 32						\$0
Dallman 31						\$0
Lakeside 8						\$0
Lakeside 7						\$0
OPTION 7						
Daliman 33	\$0		\$1,116,500	\$0	\$2,965,531	\$4,082,031
Dallman 32	\$0		\$558,250	\$120,000	\$1,210,020	\$1,888,270
Dallman 31	\$0		\$558,250	\$120,000	\$1,224,119	\$1, 902, 369

. .

10/04/98

COST ESTIMATE SUMMARY

Coal Handling Modifications

	Limestone	Two-coal	PRB Coal	Crusher	Off-site	
UNIT	Addition	Piles	Handling	Upgrade	Storage	TOTAL
Lakeside 8	\$46,500		\$0	\$0	\$0	\$46,500
Lakeside 7	\$46,500		\$0	\$0	\$0	\$46,500
OPTION 8						
Daliman 33	\$0	\$2,550,000	\$0	\$0	\$0	\$2,550,000
Daliman 32	\$0	\$1,275,000	\$1,116,500	\$120,000	\$1,256,687	\$3,768,187
Dallman 31	\$0	\$1,275,000	\$1,116,500	\$120,000	\$1,270,785	\$3,782,285
Lakeside 8	\$46,500	\$ 0	\$0	\$0	\$0	\$46,500
Lakeside 7	\$46,500	\$ 0	\$0	\$0	\$0	\$46,500
OPTION 9						
Daliman 33			\$1,116,500	\$0	\$2,965,531	\$4.082.031
Dallman 32			\$558,250	\$120.000	\$1,210,020	\$1,888.270
Dallman 31			\$558,250	\$120.000	\$1,224,119	\$1,902,369
Lakeside 8			\$0	\$0	\$0	\$0
Lakeside 7			\$0	\$0	\$0	\$0
Delimon 32		CO 550 000	e 0	6 0	¢0	\$0 550 000
Daliman 33		\$2,550,000	ΦU \$1 116 500	000 0C19	ФU С1 256 697	92,000,000 60 760 407
Daliman 32		\$1,275,000 \$1,275,000	\$1,110,500 \$1,116,500	\$120,000	₽1,200,007 €1 070 785	93,700,107 63 703 305
Lakasida 9		\$1,275,000 ¢0	φ1,110,500 ¢0	\$120,000 ¢0	φ1,270,765 ¢0	\$3,762,283 ¢0
Lakeside 8		\$U	20 20	\$U	\$U \$0	\$U \$0
		D	ΦU	Φ 0	2 0	20
OPTION 11						
Dallman 33	\$0		\$1,116,500	\$0	\$2,965,531	\$4,082,03 1
Dallman 32	\$0		\$558,250	\$120,000	\$1,210,020	\$1,888,2 70
Dallman 31	\$0		\$558,250	\$120,000	\$1,224,119	\$1,902,369
Lakeside 8	\$46,500		\$ 0	\$0	\$ 0	\$46,500
Lakeside 7	\$46,500		\$0	\$0	\$ 0	\$46,500
OPTION 13						
Dallman 33	\$0	\$2,550,000	\$2,233,000		\$2,577,758	\$7,360,758
Daliman 32	\$0	\$1,275,000	\$0		\$ 0	\$1,275,000
Dallman 31	\$0	\$1,275,000	\$0		\$ 0	\$1,275,000
Lakeside 8	\$46,500	\$0	\$0		\$ 0	\$46,500
Lakeside 7	\$46,500	\$0	\$ 0		\$ 0	\$46,500
OPTION 14						
Dallman 33			\$1,116,500	\$0	\$2,965,531	\$4,082,031
Dallman 32			\$558,250	\$120,000	\$1,210,020	\$1,888,270
Dallman 31			\$558,250	\$120,000	\$1,224,119	\$1,902,369
Lakeside 8			\$0	\$0	\$0	\$0
Lakeside 7			\$0	\$0	\$0	\$0

COST ESTIMATE LIMESTONE ADDITION SYSTEM

Options 2,3,5,7,8,11,13

			DALLMAN	I		LAK	ESIDE	TOTAL	
UNIT		33	32		31	8	7		
OPTIONS	N	ONE		5		2,3,7,	<u>8,11,13</u>		
DESCRIPTION									
Relocate LS silo			\$10,500		\$10,500	\$10,500	\$10,500	\$21,000	
Silo foundation			\$5,000		\$5,000	\$5,000	\$5,000	\$10,000	
Neigh feeder			\$13,000		\$13,000	\$13,000	\$13,000	\$26,000	
Field wiring			\$9,000		\$9,000	\$9,000	\$9,000	\$18,000	
Programming			\$3,000		\$3,000	\$3,000	\$3,000	\$6,000	
Misc. chutes			\$4,000		\$4,000	\$4,000	\$4,000	\$8,000	
Civil work - truck access			\$2,000		\$2,000	\$2,000	\$2,000	\$4,000	
TOTALS		60	\$46,500		\$46,500	\$46,500	\$46,500	\$93,000	
Option	-	5	2,3,7,8,11,	13					
Dallman 33		\$0	\$0	Π					
Dallman 32	\$46	6,500	\$0					-	
Dallman 31	\$46	6,500	\$0						
akeside 8		\$ 0	\$46,500						
		- 01	CAC 500						

COST ESTIMATE LIMESTONE ADDITION SYSTEM

Option 4

		DALLMAN			TOTAL	
	33	32	31	8	7	
OPTIONS	NONE		<u>4</u>		4	
	_					
					- <u> </u>	
Relocate LS silo	-	\$10,500	\$10,500	<u> </u>		\$21,000
					1	
Silo foundation		\$5,000	\$5,000			\$10,000
vveign feeder		\$13,000	\$13,000			\$26,000
Field wiring		\$9,000	\$9,000			\$18,000
		40,000	48,000			\$15,000
Programming		\$3,000	\$3,000			\$6.000
Misc. chutes		\$4,000	\$4,000			\$8,000
		¢2.000				
		\$2,000	\$2,000			\$4,000
Add new silo			<u> </u>		-	
(erected) for						
Lakeside				\$30,000	\$30,000	\$60,000
Field wiring (LS)				\$9,000	\$9,000	\$18,000
December (LO)						
Programing (LS)				\$3,000	\$3,000	\$6,000
Misc. Chutes				- \$4,000	\$4,000	\$8,000
	-	_	+		<u> </u>	φ <u>υ</u> ,σσο
				\$2,000	\$2,000	\$4,000
New weigh feeder				\$13,000	\$13,000	\$26,000
TOTALO			0.00.000	-		
IUIALS		\$46,500	\$46,500	\$61,000	\$61,000	\$215,000
Dallman 33	\$0	+ +	+ $-$			
Dallman 32	\$46,500	1	+			
Dallman 31	\$46,500					
Lakeside 8	\$61,000					
Lakeside 7	\$61,000					4
					าลก Units 31 &32 ผ 	

τ.

۱ ۰.

I

Electronic Filing - Received, Clerk's Office, November 21, 2008

* * * * * PC #1 * * * * *

.

COST ESTIMATE

Two Coal Piles

Options 4,5,8,10,13

		DALLMAN			TOTAL	
UNIT	33	32	31	8	7	
OPTIONS		4, 5, 8, 10, 13		NC	DNE	
Cost Split	50%	25%	25%			
DESCRIPTION						
Truck Hopper					-	
Foundation / Tunnel	\$200,000	\$100,000	\$100,000			\$400,000
Platework / Steel	\$40,000	\$20,000	\$20,000		-	\$80,000
Feeders (2)	\$20,000	\$10,000	\$10,000			\$40,000
Building	\$40,000	\$20,000	\$20,000			\$80,000
Dust Collection	\$160,000	\$80,000	\$80,000			\$320,000
Sump Pumps	\$7,500	\$3,750	\$3,750			\$15,000
Unloading conveyor	\$100,000	\$50,000	\$50,000			\$200,000
Transfer Tower #1	\$60,000	\$30,000	\$30,000		1	\$120.000
New driveway for						
unloading hopper	\$50,000	\$25,000	\$25,000			\$100.000
Dust Collection @						
Transfer House (3)	\$150,000	\$75,000	\$75,000			\$300,000
Stockout Conveyor		_			_	
w/telechute	\$437 500	\$218 750	\$218 750			\$875.000
Wet suppression system	\$60,000	\$30,000	\$30,000			\$120,000
Reclaim Hopper		-			_	
Foundation & Tunnel	\$250,000	\$125,000	\$125,000			\$500,000
Platework / Steel	\$40,000	\$20,000	\$20,000			\$80,000
Feeders (2)	\$20,000	\$10,000	\$10,000			\$40,000
Dust collection system	\$100,000	\$50,000	\$50,000			\$200,000
Sump pumps	\$7,500	\$3,750	\$3,750			\$15,000
Reclaim conveyor no.1	\$112,500	\$56,250	\$56,250			\$225,000
Outside Reclaim Hopper						
Foundation & Tunnel	\$75,000	\$37,500	\$37,500			\$150,000
Platework / Steel	\$20,000	\$10,000	\$10,000			\$40,000
Feeder	\$10,000	\$5,000	\$5,000			\$20,000
Dust collection						
(ductwork)	\$2,500	\$1,250	\$1,250			\$5,000
Sump pumps	\$7,500	\$3,750	\$3,750			\$15,000
Reclaim convevor no. 2	\$40,000	\$20.000	\$20,000			\$80.000
Transfer tower no.2	\$60.000	\$30.000	\$30,000			\$120.000
Relaim conveyor no. 3	\$150.000	\$75.000	\$75,000	<u> </u>		\$300.000
Transfer tower no.3	\$75.000	\$37.500	\$37.500			\$150.000
Radial stacker	\$75,000	\$37.500	\$37,500			\$150.000

coalhdRB.xls

÷

L

ı.

Electronic Filing - Received, Clerk's Office, November 21, 2008

* * * * * PC #1 * * * * *

COST ESTIMATE

Two Coal Piles

Options 4,5,8,10,13

Misc. chute work		\$40,000	\$20,000	\$20,000			\$80,000
Field wiring		\$125,000	\$62,500	\$62,500			\$250,000
МСС		\$15,000	\$7,500	\$7,500			\$30,000
	TOTALS	\$2,550,000	\$1,275,000	\$1,275,000	\$0	\$0	\$5,100,000
Dellerer 00							
Daliman 33		\$2,550,000					
Dallman 32		\$1,275,000					
Daliman 31		\$1,275,000					
Lakeside 8		\$0					
Lakeside 7		\$0					

ĺ

COST ESTIMATE PRB Coal Handling - Daliman

			24			TOTAL		
	33	32	31	8				
	7 6		1.4					
Cost Split /for 3 unit	/, 8, 9, 10, 11, 13,		14					
	50%	259/	250/					
		2376	23%					
		<u> </u>						
Dust Control Lingrado		-						
Evicting coal bdig eve								
Truck hopper dust								
collection	\$160,000	\$80,000	\$80,000			\$320.000		
Yard reclaim hopper								
dust collection	\$132,500	\$66,250	\$66,250			\$265.000		
Crusher house dust		<u> </u>						
collection	\$212,500	\$106,250	\$106,250			\$425,000		
Tripper bay dust								
collection	\$225,000	\$112,500	\$112,500			\$450,000		
Wet suppression for								
stockout	\$60,000	\$30,000	\$30,000			\$120,000		
Foundations	\$12,500	\$6,250	\$6,250			\$25,000		
Support decks	\$20,000	\$10,000	\$10,000			\$40,000		
Field Wiring	\$75,000	\$37,500	\$37,500			\$150,000		
Programming	\$3,000	\$1,500	\$1,500			\$6,000		
Compressed air piping	\$6,000	\$3,000	\$3,000			\$12,000		
MCC	\$10,000	\$5,000	\$5,000			\$20,000		
Fire protection								
connections (5)	\$5,000	\$2,500	\$2,500			\$10,000		
Truck hopper enclosure								
Foundations	\$20,000	\$10,000	\$10,000			\$40,000		
Structural steel / siding	\$100,000	\$50,000	\$50,000			\$200,000		
			-					
Conveyories								
	\$25,000	617 500	\$17 500			\$70,000		
Chuto soplacement	\$35,000	\$17,500	\$17,500			\$70,000		
	\$40,000	\$20,000	\$20,000					
	\$1 116 500	\$558.250	\$559.250	\$ 0	e 0	\$2 222 000		
TOTALS	φι, πο, σου	4300,200	\$330 <mark>,230</mark>		- -	\$2,233,000		
Ontion	7 9 11 14	8 10	13					
Option								
Daliman 33	\$1,116,500	\$0	\$2,233,000					
Dallman 32	\$558,250	\$1,116,500	\$0					
Dallman 31	\$558,250	\$1,116,500	\$0			·		
Lakeside 8	\$0	\$0	\$0					
Lakeside 7	\$0	\$0	\$0					

COST ESTIMATE Crusher Upgrade - Dallman Units 31 32

Options 7,8,9,10,11,14

	DALLMAN				TOTAL	
UNIT	33	32	31	8	7	
OPTIONS	NONE	7, 8, 9, 10, 11, 14		NONE		
Cost Split		50%	50%			
DESCRIPTION						
Fine grind kits (2)		\$120,000	\$120,000			\$240,000
TOTALS	\$0	\$120,000	\$120,000	\$0	\$0	\$240,000
Option	7-11, 14				_	
Daliman 33	\$0					
Dallman 32	\$120,000					
Dallman 31	\$120,000					
Lakeside 8	\$0					
Lakeside 7	\$0					

COST ESTIMATE Off-site Storage - PRB Coal

Options 7,8,9,10,11,13,14

		DALLMAN				TOTAL
UNIT	33	32	31	8	7	
				Ň	•	
<u>Cost Split</u>	33%	33%	33%			
DESCRIPTION						
Pawnee Transportation						
Clear site						\$100,000
Prepare pile base						\$100,000
Runoff collection system						\$10,000
Treatment bldg & equip.						\$50,000
Runoff pond						\$20,000
Improve access road						\$0
Improve site security					T	\$0
TOTALS	\$93,333	\$93,333	\$93,333	\$0	\$0	\$280,000
Dallman 31 & 32 only		\$140,000	\$140,000			
PRB Coal burned	Tons/yr	Tons/day	60 days coal	\$/ton coal	60 pile cost	
Dallman 33	822,237	2,253	135,162	\$21.25	\$2,872,198	
Dallman 32	319,679	876	52,550	\$21.25	\$1,116,687	
Dallman 31	323,715	887	53,213	\$21.25	\$1,130,785	
Dallman 33 (80% blend)	657,790	1,802	108,130	\$21.25	\$2,297,758	
Option	7, 9, 11, 14	8, 10	13			
Dallman 33	\$2,965,531	\$0	\$2,577,758		-	
Dallman 32	\$1,210,020	\$1,256,687	\$0			
Daliman 31	\$1,224,119	\$1,270,785	\$0			
	\$0	\$0	\$0		<u> </u>	-
Lakeside 7	\$0	\$0	\$ 0			